Database
REAL AND COMPLEX NUMBERS
Order sets
Supremum and infimum on the extended reals
infmrp1
Next ⟩
Real number intervals
Metamath Proof Explorer
Ascii
Unicode
Theorem
infmrp1
Description:
The infimum of the positive reals is 0.
(Contributed by
AV
, 5-Sep-2020)
Ref
Expression
Assertion
infmrp1
⊢
sup
ℝ
+
ℝ
<
=
0
Proof
Step
Hyp
Ref
Expression
1
rpltrp
⊢
∀
x
∈
ℝ
+
∃
y
∈
ℝ
+
y
<
x
2
ltso
⊢
<
Or
ℝ
3
2
a1i
⊢
∀
x
∈
ℝ
+
∃
y
∈
ℝ
+
y
<
x
→
<
Or
ℝ
4
0red
⊢
∀
x
∈
ℝ
+
∃
y
∈
ℝ
+
y
<
x
→
0
∈
ℝ
5
0red
⊢
z
∈
ℝ
+
→
0
∈
ℝ
6
rpre
⊢
z
∈
ℝ
+
→
z
∈
ℝ
7
rpge0
⊢
z
∈
ℝ
+
→
0
≤
z
8
5
6
7
lensymd
⊢
z
∈
ℝ
+
→
¬
z
<
0
9
8
adantl
⊢
∀
x
∈
ℝ
+
∃
y
∈
ℝ
+
y
<
x
∧
z
∈
ℝ
+
→
¬
z
<
0
10
elrp
⊢
z
∈
ℝ
+
↔
z
∈
ℝ
∧
0
<
z
11
breq2
⊢
x
=
z
→
y
<
x
↔
y
<
z
12
11
rexbidv
⊢
x
=
z
→
∃
y
∈
ℝ
+
y
<
x
↔
∃
y
∈
ℝ
+
y
<
z
13
12
rspcv
⊢
z
∈
ℝ
+
→
∀
x
∈
ℝ
+
∃
y
∈
ℝ
+
y
<
x
→
∃
y
∈
ℝ
+
y
<
z
14
10
13
sylbir
⊢
z
∈
ℝ
∧
0
<
z
→
∀
x
∈
ℝ
+
∃
y
∈
ℝ
+
y
<
x
→
∃
y
∈
ℝ
+
y
<
z
15
14
impcom
⊢
∀
x
∈
ℝ
+
∃
y
∈
ℝ
+
y
<
x
∧
z
∈
ℝ
∧
0
<
z
→
∃
y
∈
ℝ
+
y
<
z
16
3
4
9
15
eqinfd
⊢
∀
x
∈
ℝ
+
∃
y
∈
ℝ
+
y
<
x
→
sup
ℝ
+
ℝ
<
=
0
17
1
16
ax-mp
⊢
sup
ℝ
+
ℝ
<
=
0