Metamath Proof Explorer


Theorem infpnlem2

Description: Lemma for infpn . For any positive integer N , there exists a prime number j greater than N . (Contributed by NM, 5-May-2005)

Ref Expression
Hypothesis infpnlem.1 K = N ! + 1
Assertion infpnlem2 N j N < j k j k k = 1 k = j

Proof

Step Hyp Ref Expression
1 infpnlem.1 K = N ! + 1
2 nnnn0 N N 0
3 2 faccld N N !
4 3 peano2nnd N N ! + 1
5 1 4 eqeltrid N K
6 3 nnge1d N 1 N !
7 1nn 1
8 nnleltp1 1 N ! 1 N ! 1 < N ! + 1
9 7 3 8 sylancr N 1 N ! 1 < N ! + 1
10 6 9 mpbid N 1 < N ! + 1
11 10 1 breqtrrdi N 1 < K
12 nncn K K
13 nnne0 K K 0
14 12 13 jca K K K 0
15 divid K K 0 K K = 1
16 5 14 15 3syl N K K = 1
17 16 7 eqeltrdi N K K
18 breq2 j = K 1 < j 1 < K
19 oveq2 j = K K j = K K
20 19 eleq1d j = K K j K K
21 18 20 anbi12d j = K 1 < j K j 1 < K K K
22 21 rspcev K 1 < K K K j 1 < j K j
23 5 11 17 22 syl12anc N j 1 < j K j
24 breq2 j = k 1 < j 1 < k
25 oveq2 j = k K j = K k
26 25 eleq1d j = k K j K k
27 24 26 anbi12d j = k 1 < j K j 1 < k K k
28 27 nnwos j 1 < j K j j 1 < j K j k 1 < k K k j k
29 23 28 syl N j 1 < j K j k 1 < k K k j k
30 1 infpnlem1 N j 1 < j K j k 1 < k K k j k N < j k j k k = 1 k = j
31 30 reximdva N j 1 < j K j k 1 < k K k j k j N < j k j k k = 1 k = j
32 29 31 mpd N j N < j k j k k = 1 k = j