Metamath Proof Explorer


Theorem infpr

Description: The infimum of a pair. (Contributed by AV, 4-Sep-2020)

Ref Expression
Assertion infpr R Or A B A C A sup B C A R = if B R C B C

Proof

Step Hyp Ref Expression
1 simp1 R Or A B A C A R Or A
2 ifcl B A C A if B R C B C A
3 2 3adant1 R Or A B A C A if B R C B C A
4 ifpr B A C A if B R C B C B C
5 4 3adant1 R Or A B A C A if B R C B C B C
6 breq2 B = if B R C B C B R B B R if B R C B C
7 6 notbid B = if B R C B C ¬ B R B ¬ B R if B R C B C
8 breq2 C = if B R C B C B R C B R if B R C B C
9 8 notbid C = if B R C B C ¬ B R C ¬ B R if B R C B C
10 sonr R Or A B A ¬ B R B
11 10 3adant3 R Or A B A C A ¬ B R B
12 11 adantr R Or A B A C A B R C ¬ B R B
13 simpr R Or A B A C A ¬ B R C ¬ B R C
14 7 9 12 13 ifbothda R Or A B A C A ¬ B R if B R C B C
15 breq2 B = if B R C B C C R B C R if B R C B C
16 15 notbid B = if B R C B C ¬ C R B ¬ C R if B R C B C
17 breq2 C = if B R C B C C R C C R if B R C B C
18 17 notbid C = if B R C B C ¬ C R C ¬ C R if B R C B C
19 so2nr R Or A B A C A ¬ B R C C R B
20 19 3impb R Or A B A C A ¬ B R C C R B
21 imnan B R C ¬ C R B ¬ B R C C R B
22 20 21 sylibr R Or A B A C A B R C ¬ C R B
23 22 imp R Or A B A C A B R C ¬ C R B
24 sonr R Or A C A ¬ C R C
25 24 3adant2 R Or A B A C A ¬ C R C
26 25 adantr R Or A B A C A ¬ B R C ¬ C R C
27 16 18 23 26 ifbothda R Or A B A C A ¬ C R if B R C B C
28 breq1 y = B y R if B R C B C B R if B R C B C
29 28 notbid y = B ¬ y R if B R C B C ¬ B R if B R C B C
30 breq1 y = C y R if B R C B C C R if B R C B C
31 30 notbid y = C ¬ y R if B R C B C ¬ C R if B R C B C
32 29 31 ralprg B A C A y B C ¬ y R if B R C B C ¬ B R if B R C B C ¬ C R if B R C B C
33 32 3adant1 R Or A B A C A y B C ¬ y R if B R C B C ¬ B R if B R C B C ¬ C R if B R C B C
34 14 27 33 mpbir2and R Or A B A C A y B C ¬ y R if B R C B C
35 34 r19.21bi R Or A B A C A y B C ¬ y R if B R C B C
36 1 3 5 35 infmin R Or A B A C A sup B C A R = if B R C B C