Metamath Proof Explorer


Theorem infpss

Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of TakeutiZaring p. 91. See also infpssALT . (Contributed by NM, 23-Oct-2004) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion infpss ω A x x A x A

Proof

Step Hyp Ref Expression
1 infn0 ω A A
2 n0 A y y A
3 1 2 sylib ω A y y A
4 reldom Rel
5 4 brrelex2i ω A A V
6 5 difexd ω A A y V
7 6 adantr ω A y A A y V
8 simpr ω A y A y A
9 difsnpss y A A y A
10 8 9 sylib ω A y A A y A
11 infdifsn ω A A y A
12 11 adantr ω A y A A y A
13 10 12 jca ω A y A A y A A y A
14 psseq1 x = A y x A A y A
15 breq1 x = A y x A A y A
16 14 15 anbi12d x = A y x A x A A y A A y A
17 7 13 16 spcedv ω A y A x x A x A
18 3 17 exlimddv ω A x x A x A