Metamath Proof Explorer


Theorem infpssALT

Description: Alternate proof of infpss , shorter but requiring Replacement ( ax-rep ). (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 16-May-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion infpssALT ω A x x A x A

Proof

Step Hyp Ref Expression
1 ominf4 ¬ ω FinIV
2 reldom Rel
3 2 brrelex2i ω A A V
4 isfin4 A V A FinIV ¬ x x A x A
5 3 4 syl ω A A FinIV ¬ x x A x A
6 domfin4 A FinIV ω A ω FinIV
7 6 expcom ω A A FinIV ω FinIV
8 5 7 sylbird ω A ¬ x x A x A ω FinIV
9 1 8 mt3i ω A x x A x A