Metamath Proof Explorer


Theorem infpssr

Description: Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion infpssr X A X A ω A

Proof

Step Hyp Ref Expression
1 pssnel X A y y A ¬ y X
2 1 adantr X A X A y y A ¬ y X
3 eldif y A X y A ¬ y X
4 pssss X A X A
5 bren X A f f : X 1-1 onto A
6 simpr y A X X A f : X 1-1 onto A f : X 1-1 onto A
7 f1ofo f : X 1-1 onto A f : X onto A
8 forn f : X onto A ran f = A
9 6 7 8 3syl y A X X A f : X 1-1 onto A ran f = A
10 vex f V
11 10 rnex ran f V
12 9 11 eqeltrrdi y A X X A f : X 1-1 onto A A V
13 simplr y A X X A f : X 1-1 onto A X A
14 simpll y A X X A f : X 1-1 onto A y A X
15 eqid rec f -1 y ω = rec f -1 y ω
16 13 6 14 15 infpssrlem5 y A X X A f : X 1-1 onto A A V ω A
17 12 16 mpd y A X X A f : X 1-1 onto A ω A
18 17 ex y A X X A f : X 1-1 onto A ω A
19 18 exlimdv y A X X A f f : X 1-1 onto A ω A
20 5 19 syl5bi y A X X A X A ω A
21 20 ex y A X X A X A ω A
22 4 21 syl5 y A X X A X A ω A
23 22 impd y A X X A X A ω A
24 3 23 sylbir y A ¬ y X X A X A ω A
25 24 exlimiv y y A ¬ y X X A X A ω A
26 2 25 mpcom X A X A ω A