Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
infpssrlem1
Next ⟩
infpssrlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
infpssrlem1
Description:
Lemma for
infpssr
.
(Contributed by
Stefan O'Rear
, 30-Oct-2014)
Ref
Expression
Hypotheses
infpssrlem.a
⊢
φ
→
B
⊆
A
infpssrlem.c
⊢
φ
→
F
:
B
⟶
1-1 onto
A
infpssrlem.d
⊢
φ
→
C
∈
A
∖
B
infpssrlem.e
⊢
G
=
rec
⁡
F
-1
C
↾
ω
Assertion
infpssrlem1
⊢
φ
→
G
⁡
∅
=
C
Proof
Step
Hyp
Ref
Expression
1
infpssrlem.a
⊢
φ
→
B
⊆
A
2
infpssrlem.c
⊢
φ
→
F
:
B
⟶
1-1 onto
A
3
infpssrlem.d
⊢
φ
→
C
∈
A
∖
B
4
infpssrlem.e
⊢
G
=
rec
⁡
F
-1
C
↾
ω
5
4
fveq1i
⊢
G
⁡
∅
=
rec
⁡
F
-1
C
↾
ω
⁡
∅
6
fr0g
⊢
C
∈
A
∖
B
→
rec
⁡
F
-1
C
↾
ω
⁡
∅
=
C
7
3
6
syl
⊢
φ
→
rec
⁡
F
-1
C
↾
ω
⁡
∅
=
C
8
5
7
eqtrid
⊢
φ
→
G
⁡
∅
=
C