Metamath Proof Explorer


Theorem infpssrlem1

Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Hypotheses infpssrlem.a φ B A
infpssrlem.c φ F : B 1-1 onto A
infpssrlem.d φ C A B
infpssrlem.e G = rec F -1 C ω
Assertion infpssrlem1 φ G = C

Proof

Step Hyp Ref Expression
1 infpssrlem.a φ B A
2 infpssrlem.c φ F : B 1-1 onto A
3 infpssrlem.d φ C A B
4 infpssrlem.e G = rec F -1 C ω
5 4 fveq1i G = rec F -1 C ω
6 fr0g C A B rec F -1 C ω = C
7 3 6 syl φ rec F -1 C ω = C
8 5 7 eqtrid φ G = C