Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
infpssrlem2
Next ⟩
infpssrlem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
infpssrlem2
Description:
Lemma for
infpssr
.
(Contributed by
Stefan O'Rear
, 30-Oct-2014)
Ref
Expression
Hypotheses
infpssrlem.a
⊢
φ
→
B
⊆
A
infpssrlem.c
⊢
φ
→
F
:
B
⟶
1-1 onto
A
infpssrlem.d
⊢
φ
→
C
∈
A
∖
B
infpssrlem.e
⊢
G
=
rec
⁡
F
-1
C
↾
ω
Assertion
infpssrlem2
⊢
M
∈
ω
→
G
⁡
suc
⁡
M
=
F
-1
⁡
G
⁡
M
Proof
Step
Hyp
Ref
Expression
1
infpssrlem.a
⊢
φ
→
B
⊆
A
2
infpssrlem.c
⊢
φ
→
F
:
B
⟶
1-1 onto
A
3
infpssrlem.d
⊢
φ
→
C
∈
A
∖
B
4
infpssrlem.e
⊢
G
=
rec
⁡
F
-1
C
↾
ω
5
frsuc
⊢
M
∈
ω
→
rec
⁡
F
-1
C
↾
ω
⁡
suc
⁡
M
=
F
-1
⁡
rec
⁡
F
-1
C
↾
ω
⁡
M
6
4
fveq1i
⊢
G
⁡
suc
⁡
M
=
rec
⁡
F
-1
C
↾
ω
⁡
suc
⁡
M
7
4
fveq1i
⊢
G
⁡
M
=
rec
⁡
F
-1
C
↾
ω
⁡
M
8
7
fveq2i
⊢
F
-1
⁡
G
⁡
M
=
F
-1
⁡
rec
⁡
F
-1
C
↾
ω
⁡
M
9
5
6
8
3eqtr4g
⊢
M
∈
ω
→
G
⁡
suc
⁡
M
=
F
-1
⁡
G
⁡
M