Metamath Proof Explorer


Theorem infpssrlem2

Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Hypotheses infpssrlem.a φ B A
infpssrlem.c φ F : B 1-1 onto A
infpssrlem.d φ C A B
infpssrlem.e G = rec F -1 C ω
Assertion infpssrlem2 M ω G suc M = F -1 G M

Proof

Step Hyp Ref Expression
1 infpssrlem.a φ B A
2 infpssrlem.c φ F : B 1-1 onto A
3 infpssrlem.d φ C A B
4 infpssrlem.e G = rec F -1 C ω
5 frsuc M ω rec F -1 C ω suc M = F -1 rec F -1 C ω M
6 4 fveq1i G suc M = rec F -1 C ω suc M
7 4 fveq1i G M = rec F -1 C ω M
8 7 fveq2i F -1 G M = F -1 rec F -1 C ω M
9 5 6 8 3eqtr4g M ω G suc M = F -1 G M