Metamath Proof Explorer


Theorem infpssrlem3

Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Hypotheses infpssrlem.a φ B A
infpssrlem.c φ F : B 1-1 onto A
infpssrlem.d φ C A B
infpssrlem.e G = rec F -1 C ω
Assertion infpssrlem3 φ G : ω A

Proof

Step Hyp Ref Expression
1 infpssrlem.a φ B A
2 infpssrlem.c φ F : B 1-1 onto A
3 infpssrlem.d φ C A B
4 infpssrlem.e G = rec F -1 C ω
5 frfnom rec F -1 C ω Fn ω
6 4 fneq1i G Fn ω rec F -1 C ω Fn ω
7 5 6 mpbir G Fn ω
8 7 a1i φ G Fn ω
9 fveq2 c = G c = G
10 9 eleq1d c = G c A G A
11 fveq2 c = b G c = G b
12 11 eleq1d c = b G c A G b A
13 fveq2 c = suc b G c = G suc b
14 13 eleq1d c = suc b G c A G suc b A
15 1 2 3 4 infpssrlem1 φ G = C
16 3 eldifad φ C A
17 15 16 eqeltrd φ G A
18 1 adantr φ G b A B A
19 f1ocnv F : B 1-1 onto A F -1 : A 1-1 onto B
20 f1of F -1 : A 1-1 onto B F -1 : A B
21 2 19 20 3syl φ F -1 : A B
22 21 ffvelrnda φ G b A F -1 G b B
23 18 22 sseldd φ G b A F -1 G b A
24 1 2 3 4 infpssrlem2 b ω G suc b = F -1 G b
25 24 eleq1d b ω G suc b A F -1 G b A
26 23 25 syl5ibr b ω φ G b A G suc b A
27 26 expd b ω φ G b A G suc b A
28 10 12 14 17 27 finds2 c ω φ G c A
29 28 com12 φ c ω G c A
30 29 ralrimiv φ c ω G c A
31 ffnfv G : ω A G Fn ω c ω G c A
32 8 30 31 sylanbrc φ G : ω A