| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infpssrlem.a |
|
| 2 |
|
infpssrlem.c |
|
| 3 |
|
infpssrlem.d |
|
| 4 |
|
infpssrlem.e |
|
| 5 |
|
fveq2 |
|
| 6 |
5
|
neeq1d |
|
| 7 |
6
|
raleqbi1dv |
|
| 8 |
7
|
imbi2d |
|
| 9 |
|
fveq2 |
|
| 10 |
9
|
neeq1d |
|
| 11 |
10
|
raleqbi1dv |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
fveq2 |
|
| 14 |
13
|
neeq1d |
|
| 15 |
14
|
raleqbi1dv |
|
| 16 |
15
|
imbi2d |
|
| 17 |
|
fveq2 |
|
| 18 |
17
|
neeq1d |
|
| 19 |
18
|
raleqbi1dv |
|
| 20 |
19
|
imbi2d |
|
| 21 |
|
ral0 |
|
| 22 |
21
|
a1i |
|
| 23 |
|
f1ocnv |
|
| 24 |
|
f1of |
|
| 25 |
2 23 24
|
3syl |
|
| 26 |
25
|
adantl |
|
| 27 |
1 2 3 4
|
infpssrlem3 |
|
| 28 |
27
|
ffvelcdmda |
|
| 29 |
28
|
ancoms |
|
| 30 |
26 29
|
ffvelcdmd |
|
| 31 |
3
|
eldifbd |
|
| 32 |
31
|
adantl |
|
| 33 |
|
nelne2 |
|
| 34 |
30 32 33
|
syl2anc |
|
| 35 |
1 2 3 4
|
infpssrlem2 |
|
| 36 |
35
|
adantr |
|
| 37 |
1 2 3 4
|
infpssrlem1 |
|
| 38 |
37
|
adantl |
|
| 39 |
34 36 38
|
3netr4d |
|
| 40 |
39
|
3adant3 |
|
| 41 |
5
|
neeq2d |
|
| 42 |
40 41
|
imbitrrid |
|
| 43 |
42
|
adantrd |
|
| 44 |
|
simpr |
|
| 45 |
|
peano2 |
|
| 46 |
45
|
adantr |
|
| 47 |
|
elnn |
|
| 48 |
44 46 47
|
syl2anc |
|
| 49 |
48
|
3ad2antl1 |
|
| 50 |
49
|
adantl |
|
| 51 |
|
simpl |
|
| 52 |
|
nnsuc |
|
| 53 |
50 51 52
|
syl2anc |
|
| 54 |
|
nfv |
|
| 55 |
|
nfv |
|
| 56 |
|
nfra1 |
|
| 57 |
54 55 56
|
nf3an |
|
| 58 |
|
nfv |
|
| 59 |
57 58
|
nfan |
|
| 60 |
|
nfv |
|
| 61 |
|
simpl3 |
|
| 62 |
|
simpr |
|
| 63 |
|
nnord |
|
| 64 |
63
|
adantr |
|
| 65 |
|
ordsucelsuc |
|
| 66 |
64 65
|
syl |
|
| 67 |
62 66
|
mpbird |
|
| 68 |
67
|
3ad2antl1 |
|
| 69 |
68
|
adantrr |
|
| 70 |
|
rsp |
|
| 71 |
61 69 70
|
sylc |
|
| 72 |
|
f1of1 |
|
| 73 |
2 23 72
|
3syl |
|
| 74 |
73
|
ad2antlr |
|
| 75 |
29
|
adantr |
|
| 76 |
27
|
ffvelcdmda |
|
| 77 |
76
|
adantll |
|
| 78 |
|
f1fveq |
|
| 79 |
74 75 77 78
|
syl12anc |
|
| 80 |
79
|
necon3bid |
|
| 81 |
80
|
biimprd |
|
| 82 |
35
|
adantr |
|
| 83 |
1 2 3 4
|
infpssrlem2 |
|
| 84 |
83
|
adantl |
|
| 85 |
82 84
|
neeq12d |
|
| 86 |
85
|
adantlr |
|
| 87 |
81 86
|
sylibrd |
|
| 88 |
87
|
adantrl |
|
| 89 |
88
|
3adantl3 |
|
| 90 |
71 89
|
mpd |
|
| 91 |
90
|
expr |
|
| 92 |
|
eleq1 |
|
| 93 |
92
|
anbi2d |
|
| 94 |
|
fveq2 |
|
| 95 |
94
|
neeq2d |
|
| 96 |
95
|
imbi2d |
|
| 97 |
93 96
|
imbi12d |
|
| 98 |
91 97
|
mpbiri |
|
| 99 |
98
|
com3l |
|
| 100 |
59 60 99
|
rexlimd |
|
| 101 |
100
|
adantl |
|
| 102 |
53 101
|
mpd |
|
| 103 |
102
|
ex |
|
| 104 |
43 103
|
pm2.61ine |
|
| 105 |
104
|
ralrimiva |
|
| 106 |
|
fveq2 |
|
| 107 |
106
|
neeq2d |
|
| 108 |
107
|
cbvralvw |
|
| 109 |
105 108
|
sylib |
|
| 110 |
109
|
3exp |
|
| 111 |
110
|
a2d |
|
| 112 |
8 12 16 20 22 111
|
finds |
|
| 113 |
112
|
impcom |
|
| 114 |
|
fveq2 |
|
| 115 |
114
|
neeq2d |
|
| 116 |
115
|
rspccv |
|
| 117 |
113 116
|
syl |
|
| 118 |
117
|
3impia |
|