Metamath Proof Explorer


Theorem infpssrlem5

Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Hypotheses infpssrlem.a φ B A
infpssrlem.c φ F : B 1-1 onto A
infpssrlem.d φ C A B
infpssrlem.e G = rec F -1 C ω
Assertion infpssrlem5 φ A V ω A

Proof

Step Hyp Ref Expression
1 infpssrlem.a φ B A
2 infpssrlem.c φ F : B 1-1 onto A
3 infpssrlem.d φ C A B
4 infpssrlem.e G = rec F -1 C ω
5 1 2 3 4 infpssrlem3 φ G : ω A
6 simpll φ b ω c ω b c φ
7 simplrr φ b ω c ω b c c ω
8 simpr φ b ω c ω b c b c
9 1 2 3 4 infpssrlem4 φ c ω b c G c G b
10 6 7 8 9 syl3anc φ b ω c ω b c G c G b
11 10 necomd φ b ω c ω b c G b G c
12 simpll φ b ω c ω c b φ
13 simplrl φ b ω c ω c b b ω
14 simpr φ b ω c ω c b c b
15 1 2 3 4 infpssrlem4 φ b ω c b G b G c
16 12 13 14 15 syl3anc φ b ω c ω c b G b G c
17 11 16 jaodan φ b ω c ω b c c b G b G c
18 17 ex φ b ω c ω b c c b G b G c
19 18 necon2bd φ b ω c ω G b = G c ¬ b c c b
20 nnord b ω Ord b
21 nnord c ω Ord c
22 ordtri3 Ord b Ord c b = c ¬ b c c b
23 20 21 22 syl2an b ω c ω b = c ¬ b c c b
24 23 adantl φ b ω c ω b = c ¬ b c c b
25 19 24 sylibrd φ b ω c ω G b = G c b = c
26 25 ralrimivva φ b ω c ω G b = G c b = c
27 dff13 G : ω 1-1 A G : ω A b ω c ω G b = G c b = c
28 5 26 27 sylanbrc φ G : ω 1-1 A
29 f1domg A V G : ω 1-1 A ω A
30 28 29 syl5com φ A V ω A