Metamath Proof Explorer


Theorem infpwfidom

Description: The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption ( ~P A i^i Fin ) e. _V because this theorem also implies that A is a set if ~P A i^i Fin is.) (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion infpwfidom 𝒫 A Fin V A 𝒫 A Fin

Proof

Step Hyp Ref Expression
1 snelpwi x A x 𝒫 A
2 snfi x Fin
3 2 a1i x A x Fin
4 1 3 elind x A x 𝒫 A Fin
5 sneqbg x A x = y x = y
6 5 adantr x A y A x = y x = y
7 4 6 dom2 𝒫 A Fin V A 𝒫 A Fin