Step |
Hyp |
Ref |
Expression |
1 |
|
infxpidm2 |
|
2 |
|
infn0 |
|
3 |
2
|
adantl |
|
4 |
|
fseqen |
|
5 |
1 3 4
|
syl2anc |
|
6 |
|
xpdom1g |
|
7 |
|
domentr |
|
8 |
6 1 7
|
syl2anc |
|
9 |
|
endomtr |
|
10 |
5 8 9
|
syl2anc |
|
11 |
|
numdom |
|
12 |
10 11
|
syldan |
|
13 |
|
eliun |
|
14 |
|
elmapi |
|
15 |
14
|
ad2antll |
|
16 |
15
|
frnd |
|
17 |
|
vex |
|
18 |
17
|
rnex |
|
19 |
18
|
elpw |
|
20 |
16 19
|
sylibr |
|
21 |
|
simprl |
|
22 |
|
ssid |
|
23 |
|
ssnnfi |
|
24 |
21 22 23
|
sylancl |
|
25 |
|
ffn |
|
26 |
|
dffn4 |
|
27 |
25 26
|
sylib |
|
28 |
15 27
|
syl |
|
29 |
|
fofi |
|
30 |
24 28 29
|
syl2anc |
|
31 |
20 30
|
elind |
|
32 |
31
|
expr |
|
33 |
32
|
rexlimdva |
|
34 |
13 33
|
syl5bi |
|
35 |
34
|
imp |
|
36 |
35
|
fmpttd |
|
37 |
36
|
ffnd |
|
38 |
36
|
frnd |
|
39 |
|
simpr |
|
40 |
39
|
elin2d |
|
41 |
|
isfi |
|
42 |
40 41
|
sylib |
|
43 |
|
ensym |
|
44 |
|
bren |
|
45 |
43 44
|
sylib |
|
46 |
|
simprl |
|
47 |
|
f1of |
|
48 |
47
|
ad2antll |
|
49 |
|
simplr |
|
50 |
49
|
elin1d |
|
51 |
50
|
elpwid |
|
52 |
48 51
|
fssd |
|
53 |
|
simplll |
|
54 |
|
vex |
|
55 |
|
elmapg |
|
56 |
53 54 55
|
sylancl |
|
57 |
52 56
|
mpbird |
|
58 |
|
oveq2 |
|
59 |
58
|
eleq2d |
|
60 |
59
|
rspcev |
|
61 |
46 57 60
|
syl2anc |
|
62 |
61 13
|
sylibr |
|
63 |
|
f1ofo |
|
64 |
63
|
ad2antll |
|
65 |
|
forn |
|
66 |
64 65
|
syl |
|
67 |
66
|
eqcomd |
|
68 |
62 67
|
jca |
|
69 |
68
|
expr |
|
70 |
69
|
eximdv |
|
71 |
45 70
|
syl5 |
|
72 |
71
|
rexlimdva |
|
73 |
42 72
|
mpd |
|
74 |
73
|
ex |
|
75 |
|
eqid |
|
76 |
75
|
elrnmpt |
|
77 |
76
|
elv |
|
78 |
|
df-rex |
|
79 |
77 78
|
bitri |
|
80 |
74 79
|
syl6ibr |
|
81 |
80
|
ssrdv |
|
82 |
38 81
|
eqssd |
|
83 |
|
df-fo |
|
84 |
37 82 83
|
sylanbrc |
|
85 |
|
fodomnum |
|
86 |
12 84 85
|
sylc |
|
87 |
|
domtr |
|
88 |
86 10 87
|
syl2anc |
|
89 |
|
pwexg |
|
90 |
89
|
adantr |
|
91 |
|
inex1g |
|
92 |
90 91
|
syl |
|
93 |
|
infpwfidom |
|
94 |
92 93
|
syl |
|
95 |
|
sbth |
|
96 |
88 94 95
|
syl2anc |
|