Metamath Proof Explorer


Theorem infpwfien

Description: Any infinite well-orderable set is equinumerous to its set of finite subsets. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion infpwfien A dom card ω A 𝒫 A Fin A

Proof

Step Hyp Ref Expression
1 infxpidm2 A dom card ω A A × A A
2 infn0 ω A A
3 2 adantl A dom card ω A A
4 fseqen A × A A A n ω A n ω × A
5 1 3 4 syl2anc A dom card ω A n ω A n ω × A
6 xpdom1g A dom card ω A ω × A A × A
7 domentr ω × A A × A A × A A ω × A A
8 6 1 7 syl2anc A dom card ω A ω × A A
9 endomtr n ω A n ω × A ω × A A n ω A n A
10 5 8 9 syl2anc A dom card ω A n ω A n A
11 numdom A dom card n ω A n A n ω A n dom card
12 10 11 syldan A dom card ω A n ω A n dom card
13 eliun x n ω A n n ω x A n
14 elmapi x A n x : n A
15 14 ad2antll A dom card ω A n ω x A n x : n A
16 15 frnd A dom card ω A n ω x A n ran x A
17 vex x V
18 17 rnex ran x V
19 18 elpw ran x 𝒫 A ran x A
20 16 19 sylibr A dom card ω A n ω x A n ran x 𝒫 A
21 simprl A dom card ω A n ω x A n n ω
22 ssid n n
23 ssnnfi n ω n n n Fin
24 21 22 23 sylancl A dom card ω A n ω x A n n Fin
25 ffn x : n A x Fn n
26 dffn4 x Fn n x : n onto ran x
27 25 26 sylib x : n A x : n onto ran x
28 15 27 syl A dom card ω A n ω x A n x : n onto ran x
29 fofi n Fin x : n onto ran x ran x Fin
30 24 28 29 syl2anc A dom card ω A n ω x A n ran x Fin
31 20 30 elind A dom card ω A n ω x A n ran x 𝒫 A Fin
32 31 expr A dom card ω A n ω x A n ran x 𝒫 A Fin
33 32 rexlimdva A dom card ω A n ω x A n ran x 𝒫 A Fin
34 13 33 syl5bi A dom card ω A x n ω A n ran x 𝒫 A Fin
35 34 imp A dom card ω A x n ω A n ran x 𝒫 A Fin
36 35 fmpttd A dom card ω A x n ω A n ran x : n ω A n 𝒫 A Fin
37 36 ffnd A dom card ω A x n ω A n ran x Fn n ω A n
38 36 frnd A dom card ω A ran x n ω A n ran x 𝒫 A Fin
39 simpr A dom card ω A y 𝒫 A Fin y 𝒫 A Fin
40 39 elin2d A dom card ω A y 𝒫 A Fin y Fin
41 isfi y Fin m ω y m
42 40 41 sylib A dom card ω A y 𝒫 A Fin m ω y m
43 ensym y m m y
44 bren m y x x : m 1-1 onto y
45 43 44 sylib y m x x : m 1-1 onto y
46 simprl A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y m ω
47 f1of x : m 1-1 onto y x : m y
48 47 ad2antll A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y x : m y
49 simplr A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y y 𝒫 A Fin
50 49 elin1d A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y y 𝒫 A
51 50 elpwid A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y y A
52 48 51 fssd A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y x : m A
53 simplll A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y A dom card
54 vex m V
55 elmapg A dom card m V x A m x : m A
56 53 54 55 sylancl A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y x A m x : m A
57 52 56 mpbird A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y x A m
58 oveq2 n = m A n = A m
59 58 eleq2d n = m x A n x A m
60 59 rspcev m ω x A m n ω x A n
61 46 57 60 syl2anc A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y n ω x A n
62 61 13 sylibr A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y x n ω A n
63 f1ofo x : m 1-1 onto y x : m onto y
64 63 ad2antll A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y x : m onto y
65 forn x : m onto y ran x = y
66 64 65 syl A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y ran x = y
67 66 eqcomd A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y y = ran x
68 62 67 jca A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y x n ω A n y = ran x
69 68 expr A dom card ω A y 𝒫 A Fin m ω x : m 1-1 onto y x n ω A n y = ran x
70 69 eximdv A dom card ω A y 𝒫 A Fin m ω x x : m 1-1 onto y x x n ω A n y = ran x
71 45 70 syl5 A dom card ω A y 𝒫 A Fin m ω y m x x n ω A n y = ran x
72 71 rexlimdva A dom card ω A y 𝒫 A Fin m ω y m x x n ω A n y = ran x
73 42 72 mpd A dom card ω A y 𝒫 A Fin x x n ω A n y = ran x
74 73 ex A dom card ω A y 𝒫 A Fin x x n ω A n y = ran x
75 eqid x n ω A n ran x = x n ω A n ran x
76 75 elrnmpt y V y ran x n ω A n ran x x n ω A n y = ran x
77 76 elv y ran x n ω A n ran x x n ω A n y = ran x
78 df-rex x n ω A n y = ran x x x n ω A n y = ran x
79 77 78 bitri y ran x n ω A n ran x x x n ω A n y = ran x
80 74 79 syl6ibr A dom card ω A y 𝒫 A Fin y ran x n ω A n ran x
81 80 ssrdv A dom card ω A 𝒫 A Fin ran x n ω A n ran x
82 38 81 eqssd A dom card ω A ran x n ω A n ran x = 𝒫 A Fin
83 df-fo x n ω A n ran x : n ω A n onto 𝒫 A Fin x n ω A n ran x Fn n ω A n ran x n ω A n ran x = 𝒫 A Fin
84 37 82 83 sylanbrc A dom card ω A x n ω A n ran x : n ω A n onto 𝒫 A Fin
85 fodomnum n ω A n dom card x n ω A n ran x : n ω A n onto 𝒫 A Fin 𝒫 A Fin n ω A n
86 12 84 85 sylc A dom card ω A 𝒫 A Fin n ω A n
87 domtr 𝒫 A Fin n ω A n n ω A n A 𝒫 A Fin A
88 86 10 87 syl2anc A dom card ω A 𝒫 A Fin A
89 pwexg A dom card 𝒫 A V
90 89 adantr A dom card ω A 𝒫 A V
91 inex1g 𝒫 A V 𝒫 A Fin V
92 90 91 syl A dom card ω A 𝒫 A Fin V
93 infpwfidom 𝒫 A Fin V A 𝒫 A Fin
94 92 93 syl A dom card ω A A 𝒫 A Fin
95 sbth 𝒫 A Fin A A 𝒫 A Fin 𝒫 A Fin A
96 88 94 95 syl2anc A dom card ω A 𝒫 A Fin A