Metamath Proof Explorer


Theorem infrecl

Description: Closure of infimum of a nonempty bounded set of reals. (Contributed by NM, 8-Oct-2005) (Revised by AV, 4-Sep-2020)

Ref Expression
Assertion infrecl A A x y A x y sup A <

Proof

Step Hyp Ref Expression
1 ltso < Or
2 1 a1i A A x y A x y < Or
3 infm3 A A x y A x y x y A ¬ y < x y x < y z A z < y
4 2 3 infcl A A x y A x y sup A <