Metamath Proof Explorer


Theorem infrglb

Description: The infimum of a nonempty bounded set of reals is the greatest lower bound. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Revised by AV, 15-Sep-2020)

Ref Expression
Assertion infrglb A A x y A x y B sup A < < B z A z < B

Proof

Step Hyp Ref Expression
1 ltso < Or
2 1 a1i A A x y A x y < Or
3 infm3 A A x y A x y x y A ¬ y < x y x < y z A z < y
4 simp1 A A x y A x y A
5 2 3 4 infglbb A A x y A x y B sup A < < B z A z < B