Metamath Proof Explorer


Theorem infrnmptle

Description: An indexed infimum of extended reals is smaller than another indexed infimum of extended reals, when every indexed element is smaller than the corresponding one. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses infrnmptle.x x φ
infrnmptle.b φ x A B *
infrnmptle.c φ x A C *
infrnmptle.l φ x A B C
Assertion infrnmptle φ sup ran x A B * < sup ran x A C * <

Proof

Step Hyp Ref Expression
1 infrnmptle.x x φ
2 infrnmptle.b φ x A B *
3 infrnmptle.c φ x A C *
4 infrnmptle.l φ x A B C
5 nfv y φ
6 nfv z φ
7 eqid x A B = x A B
8 1 7 2 rnmptssd φ ran x A B *
9 eqid x A C = x A C
10 1 9 3 rnmptssd φ ran x A C *
11 vex y V
12 9 elrnmpt y V y ran x A C x A y = C
13 11 12 ax-mp y ran x A C x A y = C
14 13 biimpi y ran x A C x A y = C
15 14 adantl φ y ran x A C x A y = C
16 nfmpt1 _ x x A B
17 16 nfrn _ x ran x A B
18 nfv x z y
19 17 18 nfrex x z ran x A B z y
20 simpr φ x A x A
21 7 elrnmpt1 x A B * B ran x A B
22 20 2 21 syl2anc φ x A B ran x A B
23 22 3adant3 φ x A y = C B ran x A B
24 4 3adant3 φ x A y = C B C
25 id y = C y = C
26 25 eqcomd y = C C = y
27 26 3ad2ant3 φ x A y = C C = y
28 24 27 breqtrd φ x A y = C B y
29 breq1 z = B z y B y
30 29 rspcev B ran x A B B y z ran x A B z y
31 23 28 30 syl2anc φ x A y = C z ran x A B z y
32 31 3exp φ x A y = C z ran x A B z y
33 1 19 32 rexlimd φ x A y = C z ran x A B z y
34 33 adantr φ y ran x A C x A y = C z ran x A B z y
35 15 34 mpd φ y ran x A C z ran x A B z y
36 5 6 8 10 35 infleinf2 φ sup ran x A B * < sup ran x A C * <