Metamath Proof Explorer


Theorem infrpge

Description: The infimum of a nonempty, bounded subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses infrpge.xph xφ
infrpge.a φA*
infrpge.an0 φA
infrpge.bnd φxyAxy
infrpge.b φB+
Assertion infrpge φzAzinfA*<+𝑒B

Proof

Step Hyp Ref Expression
1 infrpge.xph xφ
2 infrpge.a φA*
3 infrpge.an0 φA
4 infrpge.bnd φxyAxy
5 infrpge.b φB+
6 n0 AzzA
7 6 biimpi AzzA
8 3 7 syl φzzA
9 8 adantr φinfA*<=+∞zzA
10 nfv zφinfA*<=+∞
11 simpr φinfA*<=+∞zAzA
12 2 adantr φzAA*
13 simpr φzAzA
14 12 13 sseldd φzAz*
15 pnfge z*z+∞
16 14 15 syl φzAz+∞
17 16 adantlr φinfA*<=+∞zAz+∞
18 oveq1 infA*<=+∞infA*<+𝑒B=+∞+𝑒B
19 18 adantl φinfA*<=+∞infA*<+𝑒B=+∞+𝑒B
20 5 rpxrd φB*
21 5 rpred φB
22 renemnf BB−∞
23 21 22 syl φB−∞
24 xaddpnf2 B*B−∞+∞+𝑒B=+∞
25 20 23 24 syl2anc φ+∞+𝑒B=+∞
26 25 adantr φinfA*<=+∞+∞+𝑒B=+∞
27 19 26 eqtr2d φinfA*<=+∞+∞=infA*<+𝑒B
28 27 adantr φinfA*<=+∞zA+∞=infA*<+𝑒B
29 17 28 breqtrd φinfA*<=+∞zAzinfA*<+𝑒B
30 11 29 jca φinfA*<=+∞zAzAzinfA*<+𝑒B
31 30 ex φinfA*<=+∞zAzAzinfA*<+𝑒B
32 10 31 eximd φinfA*<=+∞zzAzzAzinfA*<+𝑒B
33 9 32 mpd φinfA*<=+∞zzAzinfA*<+𝑒B
34 df-rex zAzinfA*<+𝑒BzzAzinfA*<+𝑒B
35 33 34 sylibr φinfA*<=+∞zAzinfA*<+𝑒B
36 simpl φ¬infA*<=+∞φ
37 nfv x−∞<infA*<
38 mnfxr −∞*
39 38 a1i φxyAxy−∞*
40 rexr xx*
41 40 3ad2ant2 φxyAxyx*
42 infxrcl A*infA*<*
43 2 42 syl φinfA*<*
44 43 3ad2ant1 φxyAxyinfA*<*
45 mnflt x−∞<x
46 45 3ad2ant2 φxyAxy−∞<x
47 simp3 φxyAxyyAxy
48 2 adantr φxA*
49 40 adantl φxx*
50 infxrgelb A*x*xinfA*<yAxy
51 48 49 50 syl2anc φxxinfA*<yAxy
52 51 3adant3 φxyAxyxinfA*<yAxy
53 47 52 mpbird φxyAxyxinfA*<
54 39 41 44 46 53 xrltletrd φxyAxy−∞<infA*<
55 54 3exp φxyAxy−∞<infA*<
56 1 37 55 rexlimd φxyAxy−∞<infA*<
57 4 56 mpd φ−∞<infA*<
58 57 adantr φ¬infA*<=+∞−∞<infA*<
59 neqne ¬infA*<=+∞infA*<+∞
60 59 adantl φ¬infA*<=+∞infA*<+∞
61 43 adantr φ¬infA*<=+∞infA*<*
62 60 61 nepnfltpnf φ¬infA*<=+∞infA*<<+∞
63 58 62 jca φ¬infA*<=+∞−∞<infA*<infA*<<+∞
64 xrrebnd infA*<*infA*<−∞<infA*<infA*<<+∞
65 43 64 syl φinfA*<−∞<infA*<infA*<<+∞
66 65 adantr φ¬infA*<=+∞infA*<−∞<infA*<infA*<<+∞
67 63 66 mpbird φ¬infA*<=+∞infA*<
68 simpr φinfA*<infA*<
69 5 adantr φinfA*<B+
70 68 69 ltaddrpd φinfA*<infA*<<infA*<+B
71 21 adantr φinfA*<B
72 rexadd infA*<BinfA*<+𝑒B=infA*<+B
73 68 71 72 syl2anc φinfA*<infA*<+𝑒B=infA*<+B
74 73 eqcomd φinfA*<infA*<+B=infA*<+𝑒B
75 70 74 breqtrd φinfA*<infA*<<infA*<+𝑒B
76 43 adantr φinfA*<infA*<*
77 43 20 xaddcld φinfA*<+𝑒B*
78 77 adantr φinfA*<infA*<+𝑒B*
79 xrltnle infA*<*infA*<+𝑒B*infA*<<infA*<+𝑒B¬infA*<+𝑒BinfA*<
80 76 78 79 syl2anc φinfA*<infA*<<infA*<+𝑒B¬infA*<+𝑒BinfA*<
81 75 80 mpbid φinfA*<¬infA*<+𝑒BinfA*<
82 36 67 81 syl2anc φ¬infA*<=+∞¬infA*<+𝑒BinfA*<
83 simpr φ¬infA*<+𝑒BinfA*<¬infA*<+𝑒BinfA*<
84 simpl φ¬infA*<+𝑒BinfA*<φ
85 infxrgelb A*infA*<+𝑒B*infA*<+𝑒BinfA*<zAinfA*<+𝑒Bz
86 2 77 85 syl2anc φinfA*<+𝑒BinfA*<zAinfA*<+𝑒Bz
87 84 86 syl φ¬infA*<+𝑒BinfA*<infA*<+𝑒BinfA*<zAinfA*<+𝑒Bz
88 83 87 mtbid φ¬infA*<+𝑒BinfA*<¬zAinfA*<+𝑒Bz
89 rexnal zA¬infA*<+𝑒Bz¬zAinfA*<+𝑒Bz
90 88 89 sylibr φ¬infA*<+𝑒BinfA*<zA¬infA*<+𝑒Bz
91 36 82 90 syl2anc φ¬infA*<=+∞zA¬infA*<+𝑒Bz
92 14 adantr φzA¬infA*<+𝑒Bzz*
93 77 ad2antrr φzA¬infA*<+𝑒BzinfA*<+𝑒B*
94 simpr φzA¬infA*<+𝑒Bz¬infA*<+𝑒Bz
95 xrltnle z*infA*<+𝑒B*z<infA*<+𝑒B¬infA*<+𝑒Bz
96 92 93 95 syl2anc φzA¬infA*<+𝑒Bzz<infA*<+𝑒B¬infA*<+𝑒Bz
97 94 96 mpbird φzA¬infA*<+𝑒Bzz<infA*<+𝑒B
98 92 93 97 xrltled φzA¬infA*<+𝑒BzzinfA*<+𝑒B
99 98 ex φzA¬infA*<+𝑒BzzinfA*<+𝑒B
100 99 adantlr φ¬infA*<=+∞zA¬infA*<+𝑒BzzinfA*<+𝑒B
101 100 reximdva φ¬infA*<=+∞zA¬infA*<+𝑒BzzAzinfA*<+𝑒B
102 91 101 mpd φ¬infA*<=+∞zAzinfA*<+𝑒B
103 35 102 pm2.61dan φzAzinfA*<+𝑒B