Metamath Proof Explorer


Theorem infrpgernmpt

Description: The infimum of a nonempty, bounded below, indexed subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses infrpgernmpt.x x φ
infrpgernmpt.a φ A
infrpgernmpt.b φ x A B *
infrpgernmpt.y φ y x A y B
infrpgernmpt.c φ C +
Assertion infrpgernmpt φ x A B sup ran x A B * < + 𝑒 C

Proof

Step Hyp Ref Expression
1 infrpgernmpt.x x φ
2 infrpgernmpt.a φ A
3 infrpgernmpt.b φ x A B *
4 infrpgernmpt.y φ y x A y B
5 infrpgernmpt.c φ C +
6 nfv w φ
7 eqid x A B = x A B
8 1 7 3 rnmptssd φ ran x A B *
9 1 3 7 2 rnmptn0 φ ran x A B
10 breq1 y = w y B w B
11 10 ralbidv y = w x A y B x A w B
12 11 cbvrexvw y x A y B w x A w B
13 4 12 sylib φ w x A w B
14 13 rnmptlb φ w z ran x A B w z
15 6 8 9 14 5 infrpge φ w ran x A B w sup ran x A B * < + 𝑒 C
16 simpll φ w ran x A B w sup ran x A B * < + 𝑒 C φ
17 simpr φ w ran x A B w sup ran x A B * < + 𝑒 C w sup ran x A B * < + 𝑒 C
18 vex w V
19 7 elrnmpt w V w ran x A B x A w = B
20 18 19 ax-mp w ran x A B x A w = B
21 20 biimpi w ran x A B x A w = B
22 21 ad2antlr φ w ran x A B w sup ran x A B * < + 𝑒 C x A w = B
23 nfcv _ x w
24 nfcv _ x
25 nfmpt1 _ x x A B
26 25 nfrn _ x ran x A B
27 nfcv _ x *
28 nfcv _ x <
29 26 27 28 nfinf _ x sup ran x A B * <
30 nfcv _ x + 𝑒
31 nfcv _ x C
32 29 30 31 nfov _ x sup ran x A B * < + 𝑒 C
33 23 24 32 nfbr x w sup ran x A B * < + 𝑒 C
34 1 33 nfan x φ w sup ran x A B * < + 𝑒 C
35 id w = B w = B
36 35 eqcomd w = B B = w
37 36 adantl w sup ran x A B * < + 𝑒 C w = B B = w
38 simpl w sup ran x A B * < + 𝑒 C w = B w sup ran x A B * < + 𝑒 C
39 37 38 eqbrtrd w sup ran x A B * < + 𝑒 C w = B B sup ran x A B * < + 𝑒 C
40 39 ex w sup ran x A B * < + 𝑒 C w = B B sup ran x A B * < + 𝑒 C
41 40 a1d w sup ran x A B * < + 𝑒 C x A w = B B sup ran x A B * < + 𝑒 C
42 41 adantl φ w sup ran x A B * < + 𝑒 C x A w = B B sup ran x A B * < + 𝑒 C
43 34 42 reximdai φ w sup ran x A B * < + 𝑒 C x A w = B x A B sup ran x A B * < + 𝑒 C
44 43 imp φ w sup ran x A B * < + 𝑒 C x A w = B x A B sup ran x A B * < + 𝑒 C
45 16 17 22 44 syl21anc φ w ran x A B w sup ran x A B * < + 𝑒 C x A B sup ran x A B * < + 𝑒 C
46 45 rexlimdva2 φ w ran x A B w sup ran x A B * < + 𝑒 C x A B sup ran x A B * < + 𝑒 C
47 15 46 mpd φ x A B sup ran x A B * < + 𝑒 C