Metamath Proof Explorer


Theorem infsn

Description: The infimum of a singleton. (Contributed by NM, 2-Oct-2007)

Ref Expression
Assertion infsn R Or A B A sup B A R = B

Proof

Step Hyp Ref Expression
1 dfsn2 B = B B
2 1 infeq1i sup B A R = sup B B A R
3 infpr R Or A B A B A sup B B A R = if B R B B B
4 3 3anidm23 R Or A B A sup B B A R = if B R B B B
5 2 4 eqtrid R Or A B A sup B A R = if B R B B B
6 ifid if B R B B B = B
7 5 6 eqtrdi R Or A B A sup B A R = B