Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Supremum and infimum
infsn
Next ⟩
inf00
Metamath Proof Explorer
Ascii
Unicode
Theorem
infsn
Description:
The infimum of a singleton.
(Contributed by
NM
, 2-Oct-2007)
Ref
Expression
Assertion
infsn
⊢
R
Or
A
∧
B
∈
A
→
sup
B
A
R
=
B
Proof
Step
Hyp
Ref
Expression
1
dfsn2
⊢
B
=
B
B
2
1
infeq1i
⊢
sup
B
A
R
=
sup
B
B
A
R
3
infpr
⊢
R
Or
A
∧
B
∈
A
∧
B
∈
A
→
sup
B
B
A
R
=
if
B
R
B
B
B
4
3
3anidm23
⊢
R
Or
A
∧
B
∈
A
→
sup
B
B
A
R
=
if
B
R
B
B
B
5
2
4
eqtrid
⊢
R
Or
A
∧
B
∈
A
→
sup
B
A
R
=
if
B
R
B
B
B
6
ifid
⊢
if
B
R
B
B
B
=
B
7
5
6
eqtrdi
⊢
R
Or
A
∧
B
∈
A
→
sup
B
A
R
=
B