Metamath Proof Explorer


Theorem infssuzle

Description: The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by NM, 11-Oct-2005) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion infssuzle S M A S sup S < A

Proof

Step Hyp Ref Expression
1 ne0i A S S
2 uzwo S M S j S k S j k
3 1 2 sylan2 S M A S j S k S j k
4 uzssz M
5 zssre
6 4 5 sstri M
7 sstr S M M S
8 6 7 mpan2 S M S
9 lbinfle S j S k S j k A S sup S < A
10 9 3com23 S A S j S k S j k sup S < A
11 8 10 syl3an1 S M A S j S k S j k sup S < A
12 3 11 mpd3an3 S M A S sup S < A