Metamath Proof Explorer


Theorem infsupprpr

Description: The infimum of a proper pair is less than the supremum of this pair. (Contributed by AV, 13-Mar-2023)

Ref Expression
Assertion infsupprpr R Or A B A C A B C sup B C A R R sup B C A R

Proof

Step Hyp Ref Expression
1 solin R Or A B A C A B R C B = C C R B
2 1 3adantr3 R Or A B A C A B C B R C B = C C R B
3 iftrue B R C if B R C B C = B
4 3 adantr B R C R Or A B A C A B C if B R C B C = B
5 sotric R Or A B A C A B R C ¬ B = C C R B
6 5 3adantr3 R Or A B A C A B C B R C ¬ B = C C R B
7 6 biimpac B R C R Or A B A C A B C ¬ B = C C R B
8 ioran ¬ B = C C R B ¬ B = C ¬ C R B
9 simprl ¬ C R B B R C R Or A B A C A B C B R C
10 iffalse ¬ C R B if C R B B C = C
11 10 adantr ¬ C R B B R C R Or A B A C A B C if C R B B C = C
12 9 11 breqtrrd ¬ C R B B R C R Or A B A C A B C B R if C R B B C
13 12 ex ¬ C R B B R C R Or A B A C A B C B R if C R B B C
14 8 13 simplbiim ¬ B = C C R B B R C R Or A B A C A B C B R if C R B B C
15 7 14 mpcom B R C R Or A B A C A B C B R if C R B B C
16 4 15 eqbrtrd B R C R Or A B A C A B C if B R C B C R if C R B B C
17 16 ex B R C R Or A B A C A B C if B R C B C R if C R B B C
18 eqneqall B = C B C if B R C B C R if C R B B C
19 18 2a1d B = C B A C A B C if B R C B C R if C R B B C
20 19 3impd B = C B A C A B C if B R C B C R if C R B B C
21 20 adantld B = C R Or A B A C A B C if B R C B C R if C R B B C
22 pm3.22 B A C A C A B A
23 22 3adant3 B A C A B C C A B A
24 sotric R Or A C A B A C R B ¬ C = B B R C
25 24 biimpd R Or A C A B A C R B ¬ C = B B R C
26 23 25 sylan2 R Or A B A C A B C C R B ¬ C = B B R C
27 26 impcom C R B R Or A B A C A B C ¬ C = B B R C
28 ioran ¬ C = B B R C ¬ C = B ¬ B R C
29 simpr ¬ B R C C R B C R B
30 iffalse ¬ B R C if B R C B C = C
31 iftrue C R B if C R B B C = B
32 30 31 breqan12d ¬ B R C C R B if B R C B C R if C R B B C C R B
33 29 32 mpbird ¬ B R C C R B if B R C B C R if C R B B C
34 33 a1d ¬ B R C C R B R Or A B A C A B C if B R C B C R if C R B B C
35 34 expimpd ¬ B R C C R B R Or A B A C A B C if B R C B C R if C R B B C
36 28 35 simplbiim ¬ C = B B R C C R B R Or A B A C A B C if B R C B C R if C R B B C
37 27 36 mpcom C R B R Or A B A C A B C if B R C B C R if C R B B C
38 37 ex C R B R Or A B A C A B C if B R C B C R if C R B B C
39 17 21 38 3jaoi B R C B = C C R B R Or A B A C A B C if B R C B C R if C R B B C
40 2 39 mpcom R Or A B A C A B C if B R C B C R if C R B B C
41 infpr R Or A B A C A sup B C A R = if B R C B C
42 suppr R Or A B A C A sup B C A R = if C R B B C
43 41 42 breq12d R Or A B A C A sup B C A R R sup B C A R if B R C B C R if C R B B C
44 43 3adant3r3 R Or A B A C A B C sup B C A R R sup B C A R if B R C B C R if C R B B C
45 40 44 mpbird R Or A B A C A B C sup B C A R R sup B C A R