Metamath Proof Explorer


Theorem infunabs

Description: An infinite set is equinumerous to its union with a smaller one. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infunabs A dom card ω A B A A B A

Proof

Step Hyp Ref Expression
1 simp1 A dom card ω A B A A dom card
2 reldom Rel
3 2 brrelex1i B A B V
4 3 3ad2ant3 A dom card ω A B A B V
5 undjudom A dom card B V A B A ⊔︀ B
6 1 4 5 syl2anc A dom card ω A B A A B A ⊔︀ B
7 infdjuabs A dom card ω A B A A ⊔︀ B A
8 domentr A B A ⊔︀ B A ⊔︀ B A A B A
9 6 7 8 syl2anc A dom card ω A B A A B A
10 unexg A dom card B V A B V
11 1 4 10 syl2anc A dom card ω A B A A B V
12 ssun1 A A B
13 ssdomg A B V A A B A A B
14 11 12 13 mpisyl A dom card ω A B A A A B
15 sbth A B A A A B A B A
16 9 14 15 syl2anc A dom card ω A B A A B A