Metamath Proof Explorer


Theorem infunsdom1

Description: The union of two sets that are strictly dominated by the infinite set X is also dominated by X . This version of infunsdom assumes additionally that A is the smaller of the two. (Contributed by Mario Carneiro, 14-Dec-2013) (Revised by Mario Carneiro, 3-May-2015)

Ref Expression
Assertion infunsdom1 X dom card ω X A B B X A B X

Proof

Step Hyp Ref Expression
1 simprl X dom card ω X A B B X A B
2 domsdomtr A B B ω A ω
3 1 2 sylan X dom card ω X A B B X B ω A ω
4 unfi2 A ω B ω A B ω
5 3 4 sylancom X dom card ω X A B B X B ω A B ω
6 simpllr X dom card ω X A B B X B ω ω X
7 sdomdomtr A B ω ω X A B X
8 5 6 7 syl2anc X dom card ω X A B B X B ω A B X
9 omelon ω On
10 onenon ω On ω dom card
11 9 10 ax-mp ω dom card
12 simpll X dom card ω X A B B X X dom card
13 sdomdom B X B X
14 13 ad2antll X dom card ω X A B B X B X
15 numdom X dom card B X B dom card
16 12 14 15 syl2anc X dom card ω X A B B X B dom card
17 domtri2 ω dom card B dom card ω B ¬ B ω
18 11 16 17 sylancr X dom card ω X A B B X ω B ¬ B ω
19 18 biimpar X dom card ω X A B B X ¬ B ω ω B
20 uncom A B = B A
21 16 adantr X dom card ω X A B B X ω B B dom card
22 simpr X dom card ω X A B B X ω B ω B
23 1 adantr X dom card ω X A B B X ω B A B
24 infunabs B dom card ω B A B B A B
25 21 22 23 24 syl3anc X dom card ω X A B B X ω B B A B
26 20 25 eqbrtrid X dom card ω X A B B X ω B A B B
27 simplrr X dom card ω X A B B X ω B B X
28 ensdomtr A B B B X A B X
29 26 27 28 syl2anc X dom card ω X A B B X ω B A B X
30 19 29 syldan X dom card ω X A B B X ¬ B ω A B X
31 8 30 pm2.61dan X dom card ω X A B B X A B X