Metamath Proof Explorer


Theorem infxp

Description: Absorption law for multiplication with an infinite cardinal. Equivalent to Proposition 10.41 of TakeutiZaring p. 95. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infxp A dom card ω A B dom card B A × B A B

Proof

Step Hyp Ref Expression
1 sdomdom B A B A
2 infxpabs A dom card ω A B B A A × B A
3 infunabs A dom card ω A B A A B A
4 3 3expa A dom card ω A B A A B A
5 4 adantrl A dom card ω A B B A A B A
6 5 ensymd A dom card ω A B B A A A B
7 entr A × B A A A B A × B A B
8 2 6 7 syl2anc A dom card ω A B B A A × B A B
9 8 expr A dom card ω A B B A A × B A B
10 9 adantrl A dom card ω A B dom card B B A A × B A B
11 1 10 syl5 A dom card ω A B dom card B B A A × B A B
12 domtri2 A dom card B dom card A B ¬ B A
13 12 ad2ant2r A dom card ω A B dom card B A B ¬ B A
14 xpcomeng A dom card B dom card A × B B × A
15 14 ad2ant2r A dom card ω A B dom card B A × B B × A
16 simplrl A dom card ω A B dom card B A B B dom card
17 domtr ω A A B ω B
18 17 ad4ant24 A dom card ω A B dom card B A B ω B
19 infn0 ω A A
20 19 ad3antlr A dom card ω A B dom card B A B A
21 simpr A dom card ω A B dom card B A B A B
22 infxpabs B dom card ω B A A B B × A B
23 16 18 20 21 22 syl22anc A dom card ω A B dom card B A B B × A B
24 uncom A B = B A
25 infunabs B dom card ω B A B B A B
26 16 18 21 25 syl3anc A dom card ω A B dom card B A B B A B
27 24 26 eqbrtrid A dom card ω A B dom card B A B A B B
28 27 ensymd A dom card ω A B dom card B A B B A B
29 entr B × A B B A B B × A A B
30 23 28 29 syl2anc A dom card ω A B dom card B A B B × A A B
31 entr A × B B × A B × A A B A × B A B
32 15 30 31 syl2an2r A dom card ω A B dom card B A B A × B A B
33 32 ex A dom card ω A B dom card B A B A × B A B
34 13 33 sylbird A dom card ω A B dom card B ¬ B A A × B A B
35 11 34 pm2.61d A dom card ω A B dom card B A × B A B