Metamath Proof Explorer


Theorem infxpenc

Description: A canonical version of infxpen , by a completely different approach (although it uses infxpen via xpomen ). Using Cantor's normal form, we can show that A ^o B respects equinumerosity ( oef1o ), so that all the steps of (om ^ W ) x. ( om ^ W ) ~_om ^ ( 2 W ) ~ (om ^ 2 ) ^ W ~_om ^ W can be verified using bijections to do the ordinal commutations. (The assumption on N can be satisfied using cnfcom3c .) (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 7-Jul-2019)

Ref Expression
Hypotheses infxpenc.1 φ A On
infxpenc.2 φ ω A
infxpenc.3 φ W On 1 𝑜
infxpenc.4 φ F : ω 𝑜 2 𝑜 1-1 onto ω
infxpenc.5 φ F =
infxpenc.6 φ N : A 1-1 onto ω 𝑜 W
infxpenc.k K = y x ω 𝑜 2 𝑜 W | finSupp x F y I W -1
infxpenc.h H = ω CNF W K ω 𝑜 2 𝑜 CNF W -1
infxpenc.l L = y x ω W 𝑜 2 𝑜 | finSupp x I ω y Y X -1 -1
infxpenc.x X = z 2 𝑜 , w W W 𝑜 z + 𝑜 w
infxpenc.y Y = z 2 𝑜 , w W 2 𝑜 𝑜 w + 𝑜 z
infxpenc.j J = ω CNF 2 𝑜 𝑜 W L ω CNF W 𝑜 2 𝑜 -1
infxpenc.z Z = x ω 𝑜 W , y ω 𝑜 W ω 𝑜 W 𝑜 x + 𝑜 y
infxpenc.t T = x A , y A N x N y
infxpenc.g G = N -1 H J Z T
Assertion infxpenc φ G : A × A 1-1 onto A

Proof

Step Hyp Ref Expression
1 infxpenc.1 φ A On
2 infxpenc.2 φ ω A
3 infxpenc.3 φ W On 1 𝑜
4 infxpenc.4 φ F : ω 𝑜 2 𝑜 1-1 onto ω
5 infxpenc.5 φ F =
6 infxpenc.6 φ N : A 1-1 onto ω 𝑜 W
7 infxpenc.k K = y x ω 𝑜 2 𝑜 W | finSupp x F y I W -1
8 infxpenc.h H = ω CNF W K ω 𝑜 2 𝑜 CNF W -1
9 infxpenc.l L = y x ω W 𝑜 2 𝑜 | finSupp x I ω y Y X -1 -1
10 infxpenc.x X = z 2 𝑜 , w W W 𝑜 z + 𝑜 w
11 infxpenc.y Y = z 2 𝑜 , w W 2 𝑜 𝑜 w + 𝑜 z
12 infxpenc.j J = ω CNF 2 𝑜 𝑜 W L ω CNF W 𝑜 2 𝑜 -1
13 infxpenc.z Z = x ω 𝑜 W , y ω 𝑜 W ω 𝑜 W 𝑜 x + 𝑜 y
14 infxpenc.t T = x A , y A N x N y
15 infxpenc.g G = N -1 H J Z T
16 f1ocnv N : A 1-1 onto ω 𝑜 W N -1 : ω 𝑜 W 1-1 onto A
17 6 16 syl φ N -1 : ω 𝑜 W 1-1 onto A
18 f1oi I W : W 1-1 onto W
19 18 a1i φ I W : W 1-1 onto W
20 omelon ω On
21 20 a1i φ ω On
22 2on 2 𝑜 On
23 oecl ω On 2 𝑜 On ω 𝑜 2 𝑜 On
24 21 22 23 sylancl φ ω 𝑜 2 𝑜 On
25 22 a1i φ 2 𝑜 On
26 peano1 ω
27 26 a1i φ ω
28 oen0 ω On 2 𝑜 On ω ω 𝑜 2 𝑜
29 21 25 27 28 syl21anc φ ω 𝑜 2 𝑜
30 ondif1 ω 𝑜 2 𝑜 On 1 𝑜 ω 𝑜 2 𝑜 On ω 𝑜 2 𝑜
31 24 29 30 sylanbrc φ ω 𝑜 2 𝑜 On 1 𝑜
32 3 eldifad φ W On
33 4 19 31 32 21 32 5 7 8 oef1o φ H : ω 𝑜 2 𝑜 𝑜 W 1-1 onto ω 𝑜 W
34 f1oi I ω : ω 1-1 onto ω
35 34 a1i φ I ω : ω 1-1 onto ω
36 10 11 omf1o W On 2 𝑜 On Y X -1 : W 𝑜 2 𝑜 1-1 onto 2 𝑜 𝑜 W
37 32 22 36 sylancl φ Y X -1 : W 𝑜 2 𝑜 1-1 onto 2 𝑜 𝑜 W
38 ondif1 ω On 1 𝑜 ω On ω
39 20 26 38 mpbir2an ω On 1 𝑜
40 39 a1i φ ω On 1 𝑜
41 omcl W On 2 𝑜 On W 𝑜 2 𝑜 On
42 32 22 41 sylancl φ W 𝑜 2 𝑜 On
43 omcl 2 𝑜 On W On 2 𝑜 𝑜 W On
44 25 32 43 syl2anc φ 2 𝑜 𝑜 W On
45 fvresi ω I ω =
46 26 45 mp1i φ I ω =
47 35 37 40 42 21 44 46 9 12 oef1o φ J : ω 𝑜 W 𝑜 2 𝑜 1-1 onto ω 𝑜 2 𝑜 𝑜 W
48 oeoe ω On 2 𝑜 On W On ω 𝑜 2 𝑜 𝑜 W = ω 𝑜 2 𝑜 𝑜 W
49 20 25 32 48 mp3an2i φ ω 𝑜 2 𝑜 𝑜 W = ω 𝑜 2 𝑜 𝑜 W
50 49 f1oeq3d φ J : ω 𝑜 W 𝑜 2 𝑜 1-1 onto ω 𝑜 2 𝑜 𝑜 W J : ω 𝑜 W 𝑜 2 𝑜 1-1 onto ω 𝑜 2 𝑜 𝑜 W
51 47 50 mpbird φ J : ω 𝑜 W 𝑜 2 𝑜 1-1 onto ω 𝑜 2 𝑜 𝑜 W
52 f1oco H : ω 𝑜 2 𝑜 𝑜 W 1-1 onto ω 𝑜 W J : ω 𝑜 W 𝑜 2 𝑜 1-1 onto ω 𝑜 2 𝑜 𝑜 W H J : ω 𝑜 W 𝑜 2 𝑜 1-1 onto ω 𝑜 W
53 33 51 52 syl2anc φ H J : ω 𝑜 W 𝑜 2 𝑜 1-1 onto ω 𝑜 W
54 df-2o 2 𝑜 = suc 1 𝑜
55 54 oveq2i W 𝑜 2 𝑜 = W 𝑜 suc 1 𝑜
56 1on 1 𝑜 On
57 omsuc W On 1 𝑜 On W 𝑜 suc 1 𝑜 = W 𝑜 1 𝑜 + 𝑜 W
58 32 56 57 sylancl φ W 𝑜 suc 1 𝑜 = W 𝑜 1 𝑜 + 𝑜 W
59 55 58 eqtrid φ W 𝑜 2 𝑜 = W 𝑜 1 𝑜 + 𝑜 W
60 om1 W On W 𝑜 1 𝑜 = W
61 32 60 syl φ W 𝑜 1 𝑜 = W
62 61 oveq1d φ W 𝑜 1 𝑜 + 𝑜 W = W + 𝑜 W
63 59 62 eqtrd φ W 𝑜 2 𝑜 = W + 𝑜 W
64 63 oveq2d φ ω 𝑜 W 𝑜 2 𝑜 = ω 𝑜 W + 𝑜 W
65 oeoa ω On W On W On ω 𝑜 W + 𝑜 W = ω 𝑜 W 𝑜 ω 𝑜 W
66 20 32 32 65 mp3an2i φ ω 𝑜 W + 𝑜 W = ω 𝑜 W 𝑜 ω 𝑜 W
67 64 66 eqtrd φ ω 𝑜 W 𝑜 2 𝑜 = ω 𝑜 W 𝑜 ω 𝑜 W
68 67 f1oeq2d φ H J : ω 𝑜 W 𝑜 2 𝑜 1-1 onto ω 𝑜 W H J : ω 𝑜 W 𝑜 ω 𝑜 W 1-1 onto ω 𝑜 W
69 53 68 mpbid φ H J : ω 𝑜 W 𝑜 ω 𝑜 W 1-1 onto ω 𝑜 W
70 oecl ω On W On ω 𝑜 W On
71 21 32 70 syl2anc φ ω 𝑜 W On
72 13 omxpenlem ω 𝑜 W On ω 𝑜 W On Z : ω 𝑜 W × ω 𝑜 W 1-1 onto ω 𝑜 W 𝑜 ω 𝑜 W
73 71 71 72 syl2anc φ Z : ω 𝑜 W × ω 𝑜 W 1-1 onto ω 𝑜 W 𝑜 ω 𝑜 W
74 f1oco H J : ω 𝑜 W 𝑜 ω 𝑜 W 1-1 onto ω 𝑜 W Z : ω 𝑜 W × ω 𝑜 W 1-1 onto ω 𝑜 W 𝑜 ω 𝑜 W H J Z : ω 𝑜 W × ω 𝑜 W 1-1 onto ω 𝑜 W
75 69 73 74 syl2anc φ H J Z : ω 𝑜 W × ω 𝑜 W 1-1 onto ω 𝑜 W
76 f1of N : A 1-1 onto ω 𝑜 W N : A ω 𝑜 W
77 6 76 syl φ N : A ω 𝑜 W
78 77 feqmptd φ N = x A N x
79 78 f1oeq1d φ N : A 1-1 onto ω 𝑜 W x A N x : A 1-1 onto ω 𝑜 W
80 6 79 mpbid φ x A N x : A 1-1 onto ω 𝑜 W
81 77 feqmptd φ N = y A N y
82 81 f1oeq1d φ N : A 1-1 onto ω 𝑜 W y A N y : A 1-1 onto ω 𝑜 W
83 6 82 mpbid φ y A N y : A 1-1 onto ω 𝑜 W
84 80 83 xpf1o φ x A , y A N x N y : A × A 1-1 onto ω 𝑜 W × ω 𝑜 W
85 f1oeq1 T = x A , y A N x N y T : A × A 1-1 onto ω 𝑜 W × ω 𝑜 W x A , y A N x N y : A × A 1-1 onto ω 𝑜 W × ω 𝑜 W
86 14 85 ax-mp T : A × A 1-1 onto ω 𝑜 W × ω 𝑜 W x A , y A N x N y : A × A 1-1 onto ω 𝑜 W × ω 𝑜 W
87 84 86 sylibr φ T : A × A 1-1 onto ω 𝑜 W × ω 𝑜 W
88 f1oco H J Z : ω 𝑜 W × ω 𝑜 W 1-1 onto ω 𝑜 W T : A × A 1-1 onto ω 𝑜 W × ω 𝑜 W H J Z T : A × A 1-1 onto ω 𝑜 W
89 75 87 88 syl2anc φ H J Z T : A × A 1-1 onto ω 𝑜 W
90 f1oco N -1 : ω 𝑜 W 1-1 onto A H J Z T : A × A 1-1 onto ω 𝑜 W N -1 H J Z T : A × A 1-1 onto A
91 17 89 90 syl2anc φ N -1 H J Z T : A × A 1-1 onto A
92 f1oeq1 G = N -1 H J Z T G : A × A 1-1 onto A N -1 H J Z T : A × A 1-1 onto A
93 15 92 ax-mp G : A × A 1-1 onto A N -1 H J Z T : A × A 1-1 onto A
94 91 93 sylibr φ G : A × A 1-1 onto A