Metamath Proof Explorer


Theorem infxpenc2lem1

Description: Lemma for infxpenc2 . (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Hypotheses infxpenc2.1 φ A On
infxpenc2.2 φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w
infxpenc2.3 W = x On 1 𝑜 ω 𝑜 x -1 ran n b
Assertion infxpenc2lem1 φ b A ω b W On 1 𝑜 n b : b 1-1 onto ω 𝑜 W

Proof

Step Hyp Ref Expression
1 infxpenc2.1 φ A On
2 infxpenc2.2 φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w
3 infxpenc2.3 W = x On 1 𝑜 ω 𝑜 x -1 ran n b
4 2 r19.21bi φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w
5 4 impr φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w
6 simpr φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w
7 oveq2 x = w ω 𝑜 x = ω 𝑜 w
8 eqid x On 1 𝑜 ω 𝑜 x = x On 1 𝑜 ω 𝑜 x
9 ovex ω 𝑜 w V
10 7 8 9 fvmpt w On 1 𝑜 x On 1 𝑜 ω 𝑜 x w = ω 𝑜 w
11 10 ad2antrl φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w x On 1 𝑜 ω 𝑜 x w = ω 𝑜 w
12 f1ofo n b : b 1-1 onto ω 𝑜 w n b : b onto ω 𝑜 w
13 12 ad2antll φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w n b : b onto ω 𝑜 w
14 forn n b : b onto ω 𝑜 w ran n b = ω 𝑜 w
15 13 14 syl φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w ran n b = ω 𝑜 w
16 11 15 eqtr4d φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w x On 1 𝑜 ω 𝑜 x w = ran n b
17 ovex ω 𝑜 x V
18 17 2a1i φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w x On 1 𝑜 ω 𝑜 x V
19 omelon ω On
20 1onn 1 𝑜 ω
21 ondif2 ω On 2 𝑜 ω On 1 𝑜 ω
22 19 20 21 mpbir2an ω On 2 𝑜
23 eldifi x On 1 𝑜 x On
24 23 ad2antrl φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w x On 1 𝑜 y On 1 𝑜 x On
25 eldifi y On 1 𝑜 y On
26 25 ad2antll φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w x On 1 𝑜 y On 1 𝑜 y On
27 oecan ω On 2 𝑜 x On y On ω 𝑜 x = ω 𝑜 y x = y
28 22 24 26 27 mp3an2i φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w x On 1 𝑜 y On 1 𝑜 ω 𝑜 x = ω 𝑜 y x = y
29 28 ex φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w x On 1 𝑜 y On 1 𝑜 ω 𝑜 x = ω 𝑜 y x = y
30 18 29 dom2lem φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w x On 1 𝑜 ω 𝑜 x : On 1 𝑜 1-1 V
31 f1f1orn x On 1 𝑜 ω 𝑜 x : On 1 𝑜 1-1 V x On 1 𝑜 ω 𝑜 x : On 1 𝑜 1-1 onto ran x On 1 𝑜 ω 𝑜 x
32 30 31 syl φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w x On 1 𝑜 ω 𝑜 x : On 1 𝑜 1-1 onto ran x On 1 𝑜 ω 𝑜 x
33 simprl φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w w On 1 𝑜
34 f1ocnvfv x On 1 𝑜 ω 𝑜 x : On 1 𝑜 1-1 onto ran x On 1 𝑜 ω 𝑜 x w On 1 𝑜 x On 1 𝑜 ω 𝑜 x w = ran n b x On 1 𝑜 ω 𝑜 x -1 ran n b = w
35 32 33 34 syl2anc φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w x On 1 𝑜 ω 𝑜 x w = ran n b x On 1 𝑜 ω 𝑜 x -1 ran n b = w
36 16 35 mpd φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w x On 1 𝑜 ω 𝑜 x -1 ran n b = w
37 3 36 eqtrid φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w W = w
38 37 eleq1d φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w W On 1 𝑜 w On 1 𝑜
39 37 oveq2d φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w ω 𝑜 W = ω 𝑜 w
40 39 f1oeq3d φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w n b : b 1-1 onto ω 𝑜 W n b : b 1-1 onto ω 𝑜 w
41 38 40 anbi12d φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w W On 1 𝑜 n b : b 1-1 onto ω 𝑜 W w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w
42 6 41 mpbird φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w W On 1 𝑜 n b : b 1-1 onto ω 𝑜 W
43 5 42 rexlimddv φ b A ω b W On 1 𝑜 n b : b 1-1 onto ω 𝑜 W