Metamath Proof Explorer


Theorem infxpenc2lem3

Description: Lemma for infxpenc2 . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 7-Jul-2019)

Ref Expression
Hypotheses infxpenc2.1 φ A On
infxpenc2.2 φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w
infxpenc2.3 W = x On 1 𝑜 ω 𝑜 x -1 ran n b
infxpenc2.4 φ F : ω 𝑜 2 𝑜 1-1 onto ω
infxpenc2.5 φ F =
Assertion infxpenc2lem3 φ g b A ω b g b : b × b 1-1 onto b

Proof

Step Hyp Ref Expression
1 infxpenc2.1 φ A On
2 infxpenc2.2 φ b A ω b w On 1 𝑜 n b : b 1-1 onto ω 𝑜 w
3 infxpenc2.3 W = x On 1 𝑜 ω 𝑜 x -1 ran n b
4 infxpenc2.4 φ F : ω 𝑜 2 𝑜 1-1 onto ω
5 infxpenc2.5 φ F =
6 eqid y x ω 𝑜 2 𝑜 W | finSupp x F y I W -1 = y x ω 𝑜 2 𝑜 W | finSupp x F y I W -1
7 eqid ω CNF W y x ω 𝑜 2 𝑜 W | finSupp x F y I W -1 ω 𝑜 2 𝑜 CNF W -1 = ω CNF W y x ω 𝑜 2 𝑜 W | finSupp x F y I W -1 ω 𝑜 2 𝑜 CNF W -1
8 eqid y x ω W 𝑜 2 𝑜 | finSupp x I ω y z 2 𝑜 , w W 2 𝑜 𝑜 w + 𝑜 z z 2 𝑜 , w W W 𝑜 z + 𝑜 w -1 -1 = y x ω W 𝑜 2 𝑜 | finSupp x I ω y z 2 𝑜 , w W 2 𝑜 𝑜 w + 𝑜 z z 2 𝑜 , w W W 𝑜 z + 𝑜 w -1 -1
9 eqid z 2 𝑜 , w W W 𝑜 z + 𝑜 w = z 2 𝑜 , w W W 𝑜 z + 𝑜 w
10 eqid z 2 𝑜 , w W 2 𝑜 𝑜 w + 𝑜 z = z 2 𝑜 , w W 2 𝑜 𝑜 w + 𝑜 z
11 eqid ω CNF 2 𝑜 𝑜 W y x ω W 𝑜 2 𝑜 | finSupp x I ω y z 2 𝑜 , w W 2 𝑜 𝑜 w + 𝑜 z z 2 𝑜 , w W W 𝑜 z + 𝑜 w -1 -1 ω CNF W 𝑜 2 𝑜 -1 = ω CNF 2 𝑜 𝑜 W y x ω W 𝑜 2 𝑜 | finSupp x I ω y z 2 𝑜 , w W 2 𝑜 𝑜 w + 𝑜 z z 2 𝑜 , w W W 𝑜 z + 𝑜 w -1 -1 ω CNF W 𝑜 2 𝑜 -1
12 eqid x ω 𝑜 W , y ω 𝑜 W ω 𝑜 W 𝑜 x + 𝑜 y = x ω 𝑜 W , y ω 𝑜 W ω 𝑜 W 𝑜 x + 𝑜 y
13 eqid x b , y b n b x n b y = x b , y b n b x n b y
14 eqid n b -1 ω CNF W y x ω 𝑜 2 𝑜 W | finSupp x F y I W -1 ω 𝑜 2 𝑜 CNF W -1 ω CNF 2 𝑜 𝑜 W y x ω W 𝑜 2 𝑜 | finSupp x I ω y z 2 𝑜 , w W 2 𝑜 𝑜 w + 𝑜 z z 2 𝑜 , w W W 𝑜 z + 𝑜 w -1 -1 ω CNF W 𝑜 2 𝑜 -1 x ω 𝑜 W , y ω 𝑜 W ω 𝑜 W 𝑜 x + 𝑜 y x b , y b n b x n b y = n b -1 ω CNF W y x ω 𝑜 2 𝑜 W | finSupp x F y I W -1 ω 𝑜 2 𝑜 CNF W -1 ω CNF 2 𝑜 𝑜 W y x ω W 𝑜 2 𝑜 | finSupp x I ω y z 2 𝑜 , w W 2 𝑜 𝑜 w + 𝑜 z z 2 𝑜 , w W W 𝑜 z + 𝑜 w -1 -1 ω CNF W 𝑜 2 𝑜 -1 x ω 𝑜 W , y ω 𝑜 W ω 𝑜 W 𝑜 x + 𝑜 y x b , y b n b x n b y
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 infxpenc2lem2 φ g b A ω b g b : b × b 1-1 onto b