Metamath Proof Explorer


Theorem infxpenlem

Description: Lemma for infxpen . (Contributed by Mario Carneiro, 9-Mar-2013) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses leweon.1 L = x y | x On × On y On × On 1 st x 1 st y 1 st x = 1 st y 2 nd x 2 nd y
r0weon.1 R = z w | z On × On w On × On 1 st z 2 nd z 1 st w 2 nd w 1 st z 2 nd z = 1 st w 2 nd w z L w
infxpen.1 Q = R a × a × a × a
infxpen.2 φ a On m a ω m m × m m ω a m a m a
infxpen.3 M = 1 st w 2 nd w
infxpen.4 J = OrdIso Q a × a
Assertion infxpenlem A On ω A A × A A

Proof

Step Hyp Ref Expression
1 leweon.1 L = x y | x On × On y On × On 1 st x 1 st y 1 st x = 1 st y 2 nd x 2 nd y
2 r0weon.1 R = z w | z On × On w On × On 1 st z 2 nd z 1 st w 2 nd w 1 st z 2 nd z = 1 st w 2 nd w z L w
3 infxpen.1 Q = R a × a × a × a
4 infxpen.2 φ a On m a ω m m × m m ω a m a m a
5 infxpen.3 M = 1 st w 2 nd w
6 infxpen.4 J = OrdIso Q a × a
7 sseq2 a = m ω a ω m
8 xpeq12 a = m a = m a × a = m × m
9 8 anidms a = m a × a = m × m
10 id a = m a = m
11 9 10 breq12d a = m a × a a m × m m
12 7 11 imbi12d a = m ω a a × a a ω m m × m m
13 sseq2 a = A ω a ω A
14 xpeq12 a = A a = A a × a = A × A
15 14 anidms a = A a × a = A × A
16 id a = A a = A
17 15 16 breq12d a = A a × a a A × A A
18 13 17 imbi12d a = A ω a a × a a ω A A × A A
19 vex a V
20 19 19 xpex a × a V
21 simpll a On m a ω m m × m m ω a m a m a a On
22 4 21 sylbi φ a On
23 onss a On a On
24 22 23 syl φ a On
25 xpss12 a On a On a × a On × On
26 24 24 25 syl2anc φ a × a On × On
27 1 2 r0weon R We On × On R Se On × On
28 27 simpli R We On × On
29 wess a × a On × On R We On × On R We a × a
30 26 28 29 mpisyl φ R We a × a
31 weinxp R We a × a R a × a × a × a We a × a
32 30 31 sylib φ R a × a × a × a We a × a
33 weeq1 Q = R a × a × a × a Q We a × a R a × a × a × a We a × a
34 3 33 ax-mp Q We a × a R a × a × a × a We a × a
35 32 34 sylibr φ Q We a × a
36 6 oiiso a × a V Q We a × a J Isom E , Q dom J a × a
37 20 35 36 sylancr φ J Isom E , Q dom J a × a
38 isof1o J Isom E , Q dom J a × a J : dom J 1-1 onto a × a
39 f1ocnv J : dom J 1-1 onto a × a J -1 : a × a 1-1 onto dom J
40 f1of1 J -1 : a × a 1-1 onto dom J J -1 : a × a 1-1 dom J
41 37 38 39 40 4syl φ J -1 : a × a 1-1 dom J
42 f1f1orn J -1 : a × a 1-1 dom J J -1 : a × a 1-1 onto ran J -1
43 20 f1oen J -1 : a × a 1-1 onto ran J -1 a × a ran J -1
44 41 42 43 3syl φ a × a ran J -1
45 f1ofn J -1 : a × a 1-1 onto dom J J -1 Fn a × a
46 37 38 39 45 4syl φ J -1 Fn a × a
47 37 adantr φ w a × a J Isom E , Q dom J a × a
48 38 39 40 3syl J Isom E , Q dom J a × a J -1 : a × a 1-1 dom J
49 cnvimass Q -1 w dom Q
50 inss2 R a × a × a × a a × a × a × a
51 3 50 eqsstri Q a × a × a × a
52 dmss Q a × a × a × a dom Q dom a × a × a × a
53 51 52 ax-mp dom Q dom a × a × a × a
54 dmxpid dom a × a × a × a = a × a
55 53 54 sseqtri dom Q a × a
56 49 55 sstri Q -1 w a × a
57 f1ores J -1 : a × a 1-1 dom J Q -1 w a × a J -1 Q -1 w : Q -1 w 1-1 onto J -1 Q -1 w
58 48 56 57 sylancl J Isom E , Q dom J a × a J -1 Q -1 w : Q -1 w 1-1 onto J -1 Q -1 w
59 20 20 xpex a × a × a × a V
60 59 inex2 R a × a × a × a V
61 3 60 eqeltri Q V
62 61 cnvex Q -1 V
63 62 imaex Q -1 w V
64 63 f1oen J -1 Q -1 w : Q -1 w 1-1 onto J -1 Q -1 w Q -1 w J -1 Q -1 w
65 47 58 64 3syl φ w a × a Q -1 w J -1 Q -1 w
66 sseqin2 Q -1 w a × a a × a Q -1 w = Q -1 w
67 56 66 mpbi a × a Q -1 w = Q -1 w
68 67 imaeq2i J -1 a × a Q -1 w = J -1 Q -1 w
69 isocnv J Isom E , Q dom J a × a J -1 Isom Q , E a × a dom J
70 47 69 syl φ w a × a J -1 Isom Q , E a × a dom J
71 simpr φ w a × a w a × a
72 isoini J -1 Isom Q , E a × a dom J w a × a J -1 a × a Q -1 w = dom J E -1 J -1 w
73 70 71 72 syl2anc φ w a × a J -1 a × a Q -1 w = dom J E -1 J -1 w
74 fvex J -1 w V
75 74 epini E -1 J -1 w = J -1 w
76 75 ineq2i dom J E -1 J -1 w = dom J J -1 w
77 6 oicl Ord dom J
78 f1of J -1 : a × a 1-1 onto dom J J -1 : a × a dom J
79 37 38 39 78 4syl φ J -1 : a × a dom J
80 79 ffvelrnda φ w a × a J -1 w dom J
81 ordelss Ord dom J J -1 w dom J J -1 w dom J
82 77 80 81 sylancr φ w a × a J -1 w dom J
83 sseqin2 J -1 w dom J dom J J -1 w = J -1 w
84 82 83 sylib φ w a × a dom J J -1 w = J -1 w
85 76 84 eqtrid φ w a × a dom J E -1 J -1 w = J -1 w
86 73 85 eqtrd φ w a × a J -1 a × a Q -1 w = J -1 w
87 68 86 eqtr3id φ w a × a J -1 Q -1 w = J -1 w
88 65 87 breqtrd φ w a × a Q -1 w J -1 w
89 88 ensymd φ w a × a J -1 w Q -1 w
90 fvex 1 st w V
91 fvex 2 nd w V
92 90 91 unex 1 st w 2 nd w V
93 5 92 eqeltri M V
94 93 sucex suc M V
95 94 94 xpex suc M × suc M V
96 xpss a × a V × V
97 simp3 φ w a × a z Q -1 w z Q -1 w
98 vex z V
99 98 eliniseg w V z Q -1 w z Q w
100 99 elv z Q -1 w z Q w
101 97 100 sylib φ w a × a z Q -1 w z Q w
102 3 breqi z Q w z R a × a × a × a w
103 brin z R a × a × a × a w z R w z a × a × a × a w
104 102 103 bitri z Q w z R w z a × a × a × a w
105 104 simprbi z Q w z a × a × a × a w
106 brxp z a × a × a × a w z a × a w a × a
107 106 simplbi z a × a × a × a w z a × a
108 101 105 107 3syl φ w a × a z Q -1 w z a × a
109 96 108 sselid φ w a × a z Q -1 w z V × V
110 22 adantr φ w a × a a On
111 110 3adant3 φ w a × a z Q -1 w a On
112 xp1st z a × a 1 st z a
113 onelon a On 1 st z a 1 st z On
114 112 113 sylan2 a On z a × a 1 st z On
115 111 108 114 syl2anc φ w a × a z Q -1 w 1 st z On
116 eloni a On Ord a
117 elxp7 w a × a w V × V 1 st w a 2 nd w a
118 117 simprbi w a × a 1 st w a 2 nd w a
119 ordunel Ord a 1 st w a 2 nd w a 1 st w 2 nd w a
120 119 3expib Ord a 1 st w a 2 nd w a 1 st w 2 nd w a
121 116 118 120 syl2im a On w a × a 1 st w 2 nd w a
122 110 71 121 sylc φ w a × a 1 st w 2 nd w a
123 5 122 eqeltrid φ w a × a M a
124 simprr a On m a ω m m × m m ω a m a m a m a m a
125 4 124 sylbi φ m a m a
126 simprl a On m a ω m m × m m ω a m a m a ω a
127 4 126 sylbi φ ω a
128 iscard card a = a a On m a m a
129 cardlim ω card a Lim card a
130 sseq2 card a = a ω card a ω a
131 limeq card a = a Lim card a Lim a
132 130 131 bibi12d card a = a ω card a Lim card a ω a Lim a
133 129 132 mpbii card a = a ω a Lim a
134 128 133 sylbir a On m a m a ω a Lim a
135 134 biimpa a On m a m a ω a Lim a
136 22 125 127 135 syl21anc φ Lim a
137 136 adantr φ w a × a Lim a
138 limsuc Lim a M a suc M a
139 137 138 syl φ w a × a M a suc M a
140 123 139 mpbid φ w a × a suc M a
141 onelon a On suc M a suc M On
142 22 140 141 syl2an2r φ w a × a suc M On
143 142 3adant3 φ w a × a z Q -1 w suc M On
144 ssun1 1 st z 1 st z 2 nd z
145 144 a1i φ w a × a z Q -1 w 1 st z 1 st z 2 nd z
146 104 simplbi z Q w z R w
147 df-br z R w z w R
148 2 eleq2i z w R z w z w | z On × On w On × On 1 st z 2 nd z 1 st w 2 nd w 1 st z 2 nd z = 1 st w 2 nd w z L w
149 opabidw z w z w | z On × On w On × On 1 st z 2 nd z 1 st w 2 nd w 1 st z 2 nd z = 1 st w 2 nd w z L w z On × On w On × On 1 st z 2 nd z 1 st w 2 nd w 1 st z 2 nd z = 1 st w 2 nd w z L w
150 147 148 149 3bitri z R w z On × On w On × On 1 st z 2 nd z 1 st w 2 nd w 1 st z 2 nd z = 1 st w 2 nd w z L w
151 150 simprbi z R w 1 st z 2 nd z 1 st w 2 nd w 1 st z 2 nd z = 1 st w 2 nd w z L w
152 simpl 1 st z 2 nd z = 1 st w 2 nd w z L w 1 st z 2 nd z = 1 st w 2 nd w
153 152 orim2i 1 st z 2 nd z 1 st w 2 nd w 1 st z 2 nd z = 1 st w 2 nd w z L w 1 st z 2 nd z 1 st w 2 nd w 1 st z 2 nd z = 1 st w 2 nd w
154 151 153 syl z R w 1 st z 2 nd z 1 st w 2 nd w 1 st z 2 nd z = 1 st w 2 nd w
155 fvex 1 st z V
156 fvex 2 nd z V
157 155 156 unex 1 st z 2 nd z V
158 157 elsuc 1 st z 2 nd z suc 1 st w 2 nd w 1 st z 2 nd z 1 st w 2 nd w 1 st z 2 nd z = 1 st w 2 nd w
159 154 158 sylibr z R w 1 st z 2 nd z suc 1 st w 2 nd w
160 suceq M = 1 st w 2 nd w suc M = suc 1 st w 2 nd w
161 5 160 ax-mp suc M = suc 1 st w 2 nd w
162 159 161 eleqtrrdi z R w 1 st z 2 nd z suc M
163 101 146 162 3syl φ w a × a z Q -1 w 1 st z 2 nd z suc M
164 ontr2 1 st z On suc M On 1 st z 1 st z 2 nd z 1 st z 2 nd z suc M 1 st z suc M
165 164 imp 1 st z On suc M On 1 st z 1 st z 2 nd z 1 st z 2 nd z suc M 1 st z suc M
166 115 143 145 163 165 syl22anc φ w a × a z Q -1 w 1 st z suc M
167 xp2nd z a × a 2 nd z a
168 onelon a On 2 nd z a 2 nd z On
169 167 168 sylan2 a On z a × a 2 nd z On
170 111 108 169 syl2anc φ w a × a z Q -1 w 2 nd z On
171 ssun2 2 nd z 1 st z 2 nd z
172 171 a1i φ w a × a z Q -1 w 2 nd z 1 st z 2 nd z
173 ontr2 2 nd z On suc M On 2 nd z 1 st z 2 nd z 1 st z 2 nd z suc M 2 nd z suc M
174 173 imp 2 nd z On suc M On 2 nd z 1 st z 2 nd z 1 st z 2 nd z suc M 2 nd z suc M
175 170 143 172 163 174 syl22anc φ w a × a z Q -1 w 2 nd z suc M
176 elxp7 z suc M × suc M z V × V 1 st z suc M 2 nd z suc M
177 176 biimpri z V × V 1 st z suc M 2 nd z suc M z suc M × suc M
178 109 166 175 177 syl12anc φ w a × a z Q -1 w z suc M × suc M
179 178 3expia φ w a × a z Q -1 w z suc M × suc M
180 179 ssrdv φ w a × a Q -1 w suc M × suc M
181 ssdomg suc M × suc M V Q -1 w suc M × suc M Q -1 w suc M × suc M
182 95 180 181 mpsyl φ w a × a Q -1 w suc M × suc M
183 127 adantr φ w a × a ω a
184 nnfi suc M ω suc M Fin
185 xpfi suc M Fin suc M Fin suc M × suc M Fin
186 185 anidms suc M Fin suc M × suc M Fin
187 isfinite suc M × suc M Fin suc M × suc M ω
188 186 187 sylib suc M Fin suc M × suc M ω
189 184 188 syl suc M ω suc M × suc M ω
190 ssdomg a V ω a ω a
191 190 elv ω a ω a
192 sdomdomtr suc M × suc M ω ω a suc M × suc M a
193 189 191 192 syl2an suc M ω ω a suc M × suc M a
194 193 expcom ω a suc M ω suc M × suc M a
195 183 194 syl φ w a × a suc M ω suc M × suc M a
196 breq1 m = suc M m a suc M a
197 125 adantr φ w a × a m a m a
198 196 197 140 rspcdva φ w a × a suc M a
199 omelon ω On
200 ontri1 ω On suc M On ω suc M ¬ suc M ω
201 199 142 200 sylancr φ w a × a ω suc M ¬ suc M ω
202 sseq2 m = suc M ω m ω suc M
203 xpeq12 m = suc M m = suc M m × m = suc M × suc M
204 203 anidms m = suc M m × m = suc M × suc M
205 id m = suc M m = suc M
206 204 205 breq12d m = suc M m × m m suc M × suc M suc M
207 202 206 imbi12d m = suc M ω m m × m m ω suc M suc M × suc M suc M
208 simplr a On m a ω m m × m m ω a m a m a m a ω m m × m m
209 4 208 sylbi φ m a ω m m × m m
210 209 adantr φ w a × a m a ω m m × m m
211 207 210 140 rspcdva φ w a × a ω suc M suc M × suc M suc M
212 201 211 sylbird φ w a × a ¬ suc M ω suc M × suc M suc M
213 ensdomtr suc M × suc M suc M suc M a suc M × suc M a
214 213 expcom suc M a suc M × suc M suc M suc M × suc M a
215 198 212 214 sylsyld φ w a × a ¬ suc M ω suc M × suc M a
216 195 215 pm2.61d φ w a × a suc M × suc M a
217 domsdomtr Q -1 w suc M × suc M suc M × suc M a Q -1 w a
218 182 216 217 syl2anc φ w a × a Q -1 w a
219 ensdomtr J -1 w Q -1 w Q -1 w a J -1 w a
220 89 218 219 syl2anc φ w a × a J -1 w a
221 ordelon Ord dom J J -1 w dom J J -1 w On
222 77 80 221 sylancr φ w a × a J -1 w On
223 onenon a On a dom card
224 110 223 syl φ w a × a a dom card
225 cardsdomel J -1 w On a dom card J -1 w a J -1 w card a
226 222 224 225 syl2anc φ w a × a J -1 w a J -1 w card a
227 220 226 mpbid φ w a × a J -1 w card a
228 eleq2 card a = a J -1 w card a J -1 w a
229 128 228 sylbir a On m a m a J -1 w card a J -1 w a
230 22 197 229 syl2an2r φ w a × a J -1 w card a J -1 w a
231 227 230 mpbid φ w a × a J -1 w a
232 231 ralrimiva φ w a × a J -1 w a
233 fnfvrnss J -1 Fn a × a w a × a J -1 w a ran J -1 a
234 ssdomg a V ran J -1 a ran J -1 a
235 19 233 234 mpsyl J -1 Fn a × a w a × a J -1 w a ran J -1 a
236 46 232 235 syl2anc φ ran J -1 a
237 endomtr a × a ran J -1 ran J -1 a a × a a
238 44 236 237 syl2anc φ a × a a
239 4 238 sylbir a On m a ω m m × m m ω a m a m a a × a a
240 df1o2 1 𝑜 =
241 1onn 1 𝑜 ω
242 240 241 eqeltrri ω
243 nnsdom ω ω
244 sdomdom ω ω
245 242 243 244 mp2b ω
246 domtr ω ω a a
247 245 191 246 sylancr ω a a
248 0ex V
249 19 248 xpsnen a × a
250 249 ensymi a a ×
251 19 xpdom2 a a × a × a
252 endomtr a a × a × a × a a a × a
253 250 251 252 sylancr a a a × a
254 247 253 syl ω a a a × a
255 254 ad2antrl a On m a ω m m × m m ω a m a m a a a × a
256 sbth a × a a a a × a a × a a
257 239 255 256 syl2anc a On m a ω m m × m m ω a m a m a a × a a
258 257 expr a On m a ω m m × m m ω a m a m a a × a a
259 simplr a On m a ω m m × m m ω a ¬ m a m a m a ω m m × m m
260 simpll a On m a ω m m × m m ω a ¬ m a m a a On
261 simprr a On m a ω m m × m m ω a ¬ m a m a ¬ m a m a
262 rexnal m a ¬ m a ¬ m a m a
263 onelss a On m a m a
264 ssdomg a On m a m a
265 263 264 syld a On m a m a
266 bren2 m a m a ¬ m a
267 266 simplbi2 m a ¬ m a m a
268 265 267 syl6 a On m a ¬ m a m a
269 268 reximdvai a On m a ¬ m a m a m a
270 262 269 syl5bir a On ¬ m a m a m a m a
271 260 261 270 sylc a On m a ω m m × m m ω a ¬ m a m a m a m a
272 r19.29 m a ω m m × m m m a m a m a ω m m × m m m a
273 259 271 272 syl2anc a On m a ω m m × m m ω a ¬ m a m a m a ω m m × m m m a
274 simprl a On m a ω m m × m m ω a ¬ m a m a ω a
275 onelon a On m a m On
276 ensym m a a m
277 domentr ω a a m ω m
278 191 276 277 syl2an ω a m a ω m
279 domnsym ω m ¬ m ω
280 nnsdom m ω m ω
281 279 280 nsyl ω m ¬ m ω
282 ontri1 ω On m On ω m ¬ m ω
283 199 282 mpan m On ω m ¬ m ω
284 281 283 syl5ibr m On ω m ω m
285 275 278 284 syl2im a On m a ω a m a ω m
286 285 expd a On m a ω a m a ω m
287 286 impcom ω a a On m a m a ω m
288 287 imim1d ω a a On m a ω m m × m m m a m × m m
289 288 imp32 ω a a On m a ω m m × m m m a m × m m
290 entr m × m m m a m × m a
291 290 ancoms m a m × m m m × m a
292 xpen a m a m a × a m × m
293 292 anidms a m a × a m × m
294 entr a × a m × m m × m a a × a a
295 293 294 sylan a m m × m a a × a a
296 276 291 295 syl2an2r m a m × m m a × a a
297 296 ex m a m × m m a × a a
298 297 ad2antll ω a a On m a ω m m × m m m a m × m m a × a a
299 289 298 mpd ω a a On m a ω m m × m m m a a × a a
300 299 ex ω a a On m a ω m m × m m m a a × a a
301 300 expr ω a a On m a ω m m × m m m a a × a a
302 301 rexlimdv ω a a On m a ω m m × m m m a a × a a
303 274 260 302 syl2anc a On m a ω m m × m m ω a ¬ m a m a m a ω m m × m m m a a × a a
304 273 303 mpd a On m a ω m m × m m ω a ¬ m a m a a × a a
305 304 expr a On m a ω m m × m m ω a ¬ m a m a a × a a
306 258 305 pm2.61d a On m a ω m m × m m ω a a × a a
307 306 exp31 a On m a ω m m × m m ω a a × a a
308 12 18 307 tfis3 A On ω A A × A A
309 308 imp A On ω A A × A A