Metamath Proof Explorer


Theorem infxrcl

Description: The infimum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 19-Jan-2006) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion infxrcl A * sup A * < *

Proof

Step Hyp Ref Expression
1 xrltso < Or *
2 1 a1i A * < Or *
3 xrinfmss A * x * y A ¬ y < x y * x < y z A z < y
4 2 3 infcl A * sup A * < *