Metamath Proof Explorer


Theorem infxrgelbrnmpt

Description: The infimum of an indexed set of extended reals is greater than or equal to a lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses infxrgelbrnmpt.x x φ
infxrgelbrnmpt.b φ x A B *
infxrgelbrnmpt.c φ C *
Assertion infxrgelbrnmpt φ C sup ran x A B * < x A C B

Proof

Step Hyp Ref Expression
1 infxrgelbrnmpt.x x φ
2 infxrgelbrnmpt.b φ x A B *
3 infxrgelbrnmpt.c φ C *
4 eqid x A B = x A B
5 1 4 2 rnmptssd φ ran x A B *
6 infxrgelb ran x A B * C * C sup ran x A B * < z ran x A B C z
7 5 3 6 syl2anc φ C sup ran x A B * < z ran x A B C z
8 nfmpt1 _ x x A B
9 8 nfrn _ x ran x A B
10 nfv x C z
11 9 10 nfralw x z ran x A B C z
12 1 11 nfan x φ z ran x A B C z
13 simpr φ x A x A
14 4 elrnmpt1 x A B * B ran x A B
15 13 2 14 syl2anc φ x A B ran x A B
16 15 adantlr φ z ran x A B C z x A B ran x A B
17 simplr φ z ran x A B C z x A z ran x A B C z
18 breq2 z = B C z C B
19 18 rspcva B ran x A B z ran x A B C z C B
20 16 17 19 syl2anc φ z ran x A B C z x A C B
21 20 ex φ z ran x A B C z x A C B
22 12 21 ralrimi φ z ran x A B C z x A C B
23 vex z V
24 4 elrnmpt z V z ran x A B x A z = B
25 23 24 ax-mp z ran x A B x A z = B
26 25 biimpi z ran x A B x A z = B
27 26 adantl x A C B z ran x A B x A z = B
28 nfra1 x x A C B
29 rspa x A C B x A C B
30 18 biimprcd C B z = B C z
31 29 30 syl x A C B x A z = B C z
32 31 ex x A C B x A z = B C z
33 28 10 32 rexlimd x A C B x A z = B C z
34 33 adantr x A C B z ran x A B x A z = B C z
35 27 34 mpd x A C B z ran x A B C z
36 35 ralrimiva x A C B z ran x A B C z
37 36 adantl φ x A C B z ran x A B C z
38 22 37 impbida φ z ran x A B C z x A C B
39 7 38 bitrd φ C sup ran x A B * < x A C B