Metamath Proof Explorer


Theorem infxrglb

Description: The infimum of a set of extended reals is less than an extended real if and only if the set contains a smaller number. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion infxrglb A * B * sup A * < < B x A x < B

Proof

Step Hyp Ref Expression
1 xrltso < Or *
2 1 a1i A * < Or *
3 xrinfmss A * z * y A ¬ y < z y * z < y x A x < y
4 id A * A *
5 2 3 4 infglbb A * B * sup A * < < B x A x < B