Metamath Proof Explorer


Theorem infxrlb

Description: A member of a set of extended reals is greater than or equal to the set's infimum. (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion infxrlb A * B A sup A * < B

Proof

Step Hyp Ref Expression
1 infxrcl A * sup A * < *
2 1 adantr A * B A sup A * < *
3 ssel2 A * B A B *
4 xrltso < Or *
5 4 a1i A * < Or *
6 xrinfmss A * x * y A ¬ y < x y * x < y z A z < y
7 5 6 inflb A * B A ¬ B < sup A * <
8 7 imp A * B A ¬ B < sup A * <
9 2 3 8 xrnltled A * B A sup A * < B