Step |
Hyp |
Ref |
Expression |
1 |
|
infxrlesupxr.1 |
|
2 |
|
infxrlesupxr.2 |
|
3 |
|
n0 |
|
4 |
3
|
biimpi |
|
5 |
2 4
|
syl |
|
6 |
1
|
infxrcld |
|
7 |
6
|
adantr |
|
8 |
1
|
sselda |
|
9 |
1
|
supxrcld |
|
10 |
9
|
adantr |
|
11 |
1
|
adantr |
|
12 |
|
simpr |
|
13 |
|
infxrlb |
|
14 |
11 12 13
|
syl2anc |
|
15 |
|
eqid |
|
16 |
11 12 15
|
supxrubd |
|
17 |
7 8 10 14 16
|
xrletrd |
|
18 |
17
|
ex |
|
19 |
18
|
exlimdv |
|
20 |
5 19
|
mpd |
|