Metamath Proof Explorer


Theorem infxrpnf

Description: Adding plus infinity to a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion infxrpnf A * sup A +∞ * < = sup A * <

Proof

Step Hyp Ref Expression
1 id A * A *
2 pnfxr +∞ *
3 snssi +∞ * +∞ *
4 2 3 ax-mp +∞ *
5 4 a1i A * +∞ *
6 1 5 unssd A * A +∞ *
7 6 infxrcld A * sup A +∞ * < *
8 infxrcl A * sup A * < *
9 ssun1 A A +∞
10 9 a1i A * A A +∞
11 infxrss A A +∞ A +∞ * sup A +∞ * < sup A * <
12 10 6 11 syl2anc A * sup A +∞ * < sup A * <
13 infeq1 A = sup A * < = sup * <
14 xrinf0 sup * < = +∞
15 14 2 eqeltri sup * < *
16 15 a1i A = sup * < *
17 13 16 eqeltrd A = sup A * < *
18 xrltso < Or *
19 infsn < Or * +∞ * sup +∞ * < = +∞
20 18 2 19 mp2an sup +∞ * < = +∞
21 20 eqcomi +∞ = sup +∞ * <
22 21 a1i A = +∞ = sup +∞ * <
23 13 14 eqtrdi A = sup A * < = +∞
24 uneq1 A = A +∞ = +∞
25 0un +∞ = +∞
26 25 a1i A = +∞ = +∞
27 24 26 eqtrd A = A +∞ = +∞
28 27 infeq1d A = sup A +∞ * < = sup +∞ * <
29 22 23 28 3eqtr4d A = sup A * < = sup A +∞ * <
30 17 29 xreqled A = sup A * < sup A +∞ * <
31 30 adantl A * A = sup A * < sup A +∞ * <
32 neqne ¬ A = A
33 nfv x A * A
34 nfv y A * A
35 simpl A * A A *
36 35 6 syl A * A A +∞ *
37 simpr A * x A x A
38 ssel2 A * x A x *
39 38 xrleidd A * x A x x
40 breq1 y = x y x x x
41 40 rspcev x A x x y A y x
42 37 39 41 syl2anc A * x A y A y x
43 42 ad4ant14 A * A x A +∞ x A y A y x
44 simpll A * A x A +∞ ¬ x A A * A
45 elunnel1 x A +∞ ¬ x A x +∞
46 elsni x +∞ x = +∞
47 45 46 syl x A +∞ ¬ x A x = +∞
48 47 adantll A * A x A +∞ ¬ x A x = +∞
49 simplr A * A x = +∞ A
50 ssel2 A * y A y *
51 pnfge y * y +∞
52 50 51 syl A * y A y +∞
53 52 adantlr A * x = +∞ y A y +∞
54 simplr A * x = +∞ y A x = +∞
55 53 54 breqtrrd A * x = +∞ y A y x
56 55 ralrimiva A * x = +∞ y A y x
57 56 adantlr A * A x = +∞ y A y x
58 r19.2z A y A y x y A y x
59 49 57 58 syl2anc A * A x = +∞ y A y x
60 44 48 59 syl2anc A * A x A +∞ ¬ x A y A y x
61 43 60 pm2.61dan A * A x A +∞ y A y x
62 33 34 35 36 61 infleinf2 A * A sup A * < sup A +∞ * <
63 32 62 sylan2 A * ¬ A = sup A * < sup A +∞ * <
64 31 63 pm2.61dan A * sup A * < sup A +∞ * <
65 7 8 12 64 xrletrid A * sup A +∞ * < = sup A * <