Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|
2 |
|
ressxr |
|
3 |
1 2
|
sstrdi |
|
4 |
|
infxrcl |
|
5 |
3 4
|
syl |
|
6 |
|
infrecl |
|
7 |
6
|
rexrd |
|
8 |
5
|
xrleidd |
|
9 |
|
infxrgelb |
|
10 |
3 5 9
|
syl2anc |
|
11 |
|
simp2 |
|
12 |
|
n0 |
|
13 |
11 12
|
sylib |
|
14 |
5
|
adantr |
|
15 |
1
|
sselda |
|
16 |
|
mnfxr |
|
17 |
16
|
a1i |
|
18 |
6
|
mnfltd |
|
19 |
6
|
leidd |
|
20 |
|
infregelb |
|
21 |
6 20
|
mpdan |
|
22 |
|
infxrgelb |
|
23 |
3 7 22
|
syl2anc |
|
24 |
21 23
|
bitr4d |
|
25 |
19 24
|
mpbid |
|
26 |
17 7 5 18 25
|
xrltletrd |
|
27 |
26
|
adantr |
|
28 |
|
infxrlb |
|
29 |
3 28
|
sylan |
|
30 |
|
xrre |
|
31 |
14 15 27 29 30
|
syl22anc |
|
32 |
13 31
|
exlimddv |
|
33 |
|
infregelb |
|
34 |
32 33
|
mpdan |
|
35 |
10 34
|
bitr4d |
|
36 |
8 35
|
mpbid |
|
37 |
5 7 36 25
|
xrletrid |
|