Metamath Proof Explorer


Theorem infxrrefi

Description: The real and extended real infima match when the set is finite. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion infxrrefi A A Fin A sup A * < = sup A <

Proof

Step Hyp Ref Expression
1 simp1 A A Fin A A
2 simp3 A A Fin A A
3 fiminre2 A A Fin x y A x y
4 3 3adant3 A A Fin A x y A x y
5 infxrre A A x y A x y sup A * < = sup A <
6 1 2 4 5 syl3anc A A Fin A sup A * < = sup A <