Metamath Proof Explorer


Theorem infxrss

Description: Larger sets of extended reals have smaller infima. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 13-Sep-2020)

Ref Expression
Assertion infxrss A B B * sup B * < sup A * <

Proof

Step Hyp Ref Expression
1 simplr A B B * x A B *
2 simpl A B B * A B
3 2 sselda A B B * x A x B
4 infxrlb B * x B sup B * < x
5 1 3 4 syl2anc A B B * x A sup B * < x
6 5 ralrimiva A B B * x A sup B * < x
7 sstr A B B * A *
8 infxrcl B * sup B * < *
9 8 adantl A B B * sup B * < *
10 infxrgelb A * sup B * < * sup B * < sup A * < x A sup B * < x
11 7 9 10 syl2anc A B B * sup B * < sup A * < x A sup B * < x
12 6 11 mpbird A B B * sup B * < sup A * <