Metamath Proof Explorer


Theorem infxrunb3rnmpt

Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses infxrunb3rnmpt.1 xφ
infxrunb3rnmpt.2 yφ
infxrunb3rnmpt.3 φxAB*
Assertion infxrunb3rnmpt φyxABysupranxAB*<=−∞

Proof

Step Hyp Ref Expression
1 infxrunb3rnmpt.1 xφ
2 infxrunb3rnmpt.2 yφ
3 infxrunb3rnmpt.3 φxAB*
4 nfmpt1 _xxAB
5 4 nfrn _xranxAB
6 nfv xzy
7 5 6 nfrexw xzranxABzy
8 simpr φxAxA
9 eqid xAB=xAB
10 9 elrnmpt1 xAB*BranxAB
11 8 3 10 syl2anc φxABranxAB
12 11 3adant3 φxAByBranxAB
13 simp3 φxAByBy
14 breq1 z=BzyBy
15 14 rspcev BranxABByzranxABzy
16 12 13 15 syl2anc φxAByzranxABzy
17 16 3exp φxAByzranxABzy
18 1 7 17 rexlimd φxAByzranxABzy
19 nfv zxABy
20 vex zV
21 9 elrnmpt zVzranxABxAz=B
22 20 21 ax-mp zranxABxAz=B
23 22 biimpi zranxABxAz=B
24 14 biimpcd zyz=BBy
25 24 a1d zyxAz=BBy
26 6 25 reximdai zyxAz=BxABy
27 26 com12 xAz=BzyxABy
28 23 27 syl zranxABzyxABy
29 19 28 rexlimi zranxABzyxABy
30 29 a1i φzranxABzyxABy
31 18 30 impbid φxAByzranxABzy
32 2 31 ralbid φyxAByyzranxABzy
33 1 9 3 rnmptssd φranxAB*
34 infxrunb3 ranxAB*yzranxABzysupranxAB*<=−∞
35 33 34 syl φyzranxABzysupranxAB*<=−∞
36 32 35 bitrd φyxABysupranxAB*<=−∞