Metamath Proof Explorer


Theorem iniin2

Description: Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion iniin2 A B x A C = x A B C

Proof

Step Hyp Ref Expression
1 iinin2 A x A B C = B x A C
2 1 eqcomd A B x A C = x A B C