Metamath Proof Explorer


Theorem inimasn

Description: The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017)

Ref Expression
Assertion inimasn C V A B C = A C B C

Proof

Step Hyp Ref Expression
1 elin x A C B C x A C x B C
2 elin C x A B C x A C x B
3 2 a1i C V C x A B C x A C x B
4 elimasng C V x V x A B C C x A B
5 4 elvd C V x A B C C x A B
6 elimasng C V x V x A C C x A
7 6 elvd C V x A C C x A
8 elimasng C V x V x B C C x B
9 8 elvd C V x B C C x B
10 7 9 anbi12d C V x A C x B C C x A C x B
11 3 5 10 3bitr4rd C V x A C x B C x A B C
12 1 11 bitr2id C V x A B C x A C B C
13 12 eqrdv C V A B C = A C B C