Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
inimass
Next ⟩
inimasn
Metamath Proof Explorer
Ascii
Unicode
Theorem
inimass
Description:
The image of an intersection.
(Contributed by
Thierry Arnoux
, 16-Dec-2017)
Ref
Expression
Assertion
inimass
⊢
A
∩
B
C
⊆
A
C
∩
B
C
Proof
Step
Hyp
Ref
Expression
1
rnin
⊢
ran
⁡
A
↾
C
∩
B
↾
C
⊆
ran
⁡
A
↾
C
∩
ran
⁡
B
↾
C
2
df-ima
⊢
A
∩
B
C
=
ran
⁡
A
∩
B
↾
C
3
resindir
⊢
A
∩
B
↾
C
=
A
↾
C
∩
B
↾
C
4
3
rneqi
⊢
ran
⁡
A
∩
B
↾
C
=
ran
⁡
A
↾
C
∩
B
↾
C
5
2
4
eqtri
⊢
A
∩
B
C
=
ran
⁡
A
↾
C
∩
B
↾
C
6
df-ima
⊢
A
C
=
ran
⁡
A
↾
C
7
df-ima
⊢
B
C
=
ran
⁡
B
↾
C
8
6
7
ineq12i
⊢
A
C
∩
B
C
=
ran
⁡
A
↾
C
∩
ran
⁡
B
↾
C
9
1
5
8
3sstr4i
⊢
A
∩
B
C
⊆
A
C
∩
B
C