Metamath Proof Explorer


Theorem inindif

Description: See inundif . (Contributed by Thierry Arnoux, 13-Sep-2017)

Ref Expression
Assertion inindif A C A C =

Proof

Step Hyp Ref Expression
1 inss2 A C C
2 1 orci A C C A C
3 inss A C C A C A C A C
4 2 3 ax-mp A C A C
5 inssdif0 A C A C A C A C =
6 4 5 mpbi A C A C =