Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
General Set Theory
Set relations and operations - misc additions
inindif
Next ⟩
difininv
Metamath Proof Explorer
Ascii
Unicode
Theorem
inindif
Description:
See
inundif
.
(Contributed by
Thierry Arnoux
, 13-Sep-2017)
Ref
Expression
Assertion
inindif
⊢
A
∩
C
∩
A
∖
C
=
∅
Proof
Step
Hyp
Ref
Expression
1
inss2
⊢
A
∩
C
⊆
C
2
1
orci
⊢
A
∩
C
⊆
C
∨
A
⊆
C
3
inss
⊢
A
∩
C
⊆
C
∨
A
⊆
C
→
A
∩
C
∩
A
⊆
C
4
2
3
ax-mp
⊢
A
∩
C
∩
A
⊆
C
5
inssdif0
⊢
A
∩
C
∩
A
⊆
C
↔
A
∩
C
∩
A
∖
C
=
∅
6
4
5
mpbi
⊢
A
∩
C
∩
A
∖
C
=
∅