| Step | Hyp | Ref | Expression | 
						
							| 1 |  | initoeu1.c |  | 
						
							| 2 |  | initoeu1.a |  | 
						
							| 3 |  | initoeu2.i |  | 
						
							| 4 |  | ciclcl |  | 
						
							| 5 | 1 4 | sylan |  | 
						
							| 6 |  | cicrcl |  | 
						
							| 7 | 1 6 | sylan |  | 
						
							| 8 | 1 | adantr |  | 
						
							| 9 |  | cicsym |  | 
						
							| 10 | 8 9 | sylan |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | simprr |  | 
						
							| 14 |  | simprl |  | 
						
							| 15 | 11 12 8 13 14 | cic |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 12 16 1 | isinitoi |  | 
						
							| 18 | 2 17 | mpdan |  | 
						
							| 19 |  | oveq2 |  | 
						
							| 20 | 19 | eleq2d |  | 
						
							| 21 | 20 | eubidv |  | 
						
							| 22 | 21 | rspcva |  | 
						
							| 23 |  | nfv |  | 
						
							| 24 |  | nfv |  | 
						
							| 25 |  | eleq1w |  | 
						
							| 26 | 23 24 25 | cbveuw |  | 
						
							| 27 |  | euex |  | 
						
							| 28 | 1 | adantr |  | 
						
							| 29 |  | simpr |  | 
						
							| 30 | 29 | ad2antrl |  | 
						
							| 31 |  | simprll |  | 
						
							| 32 | 12 16 11 28 30 31 | isohom |  | 
						
							| 33 | 32 | sselda |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 28 | ad2antrr |  | 
						
							| 36 | 30 | ad2antrr |  | 
						
							| 37 | 31 | ad2antrr |  | 
						
							| 38 |  | simprr |  | 
						
							| 39 | 38 | ad2antrr |  | 
						
							| 40 |  | simprl |  | 
						
							| 41 |  | simprr |  | 
						
							| 42 | 12 16 34 35 36 37 39 40 41 | catcocl |  | 
						
							| 43 |  | simp-4l |  | 
						
							| 44 |  | df-3an |  | 
						
							| 45 | 44 | biimpri |  | 
						
							| 46 | 45 | ad4antlr |  | 
						
							| 47 |  | simpr |  | 
						
							| 48 | 47 | ad2antrr |  | 
						
							| 49 | 41 | adantr |  | 
						
							| 50 |  | simpr |  | 
						
							| 51 | 1 2 12 16 11 34 | initoeu2lem2 |  | 
						
							| 52 | 43 46 48 49 50 51 | syl113anc |  | 
						
							| 53 | 42 52 | mpdan |  | 
						
							| 54 | 53 | ex |  | 
						
							| 55 | 33 54 | mpand |  | 
						
							| 56 | 55 | ex |  | 
						
							| 57 | 56 | com23 |  | 
						
							| 58 | 57 | ex |  | 
						
							| 59 | 58 | com15 |  | 
						
							| 60 | 59 | expd |  | 
						
							| 61 | 60 | com24 |  | 
						
							| 62 | 61 | com12 |  | 
						
							| 63 | 62 | exlimiv |  | 
						
							| 64 | 27 63 | syl |  | 
						
							| 65 | 26 64 | sylbi |  | 
						
							| 66 | 65 | pm2.43i |  | 
						
							| 67 | 66 | com12 |  | 
						
							| 68 | 67 | adantr |  | 
						
							| 69 | 22 68 | mpd |  | 
						
							| 70 | 69 | ex |  | 
						
							| 71 | 70 | com15 |  | 
						
							| 72 | 71 | adantld |  | 
						
							| 73 | 18 72 | mpd |  | 
						
							| 74 | 73 | imp |  | 
						
							| 75 | 74 | exlimdv |  | 
						
							| 76 | 15 75 | sylbid |  | 
						
							| 77 | 76 | adantr |  | 
						
							| 78 | 10 77 | mpd |  | 
						
							| 79 | 78 | an32s |  | 
						
							| 80 | 79 | ralrimiv |  | 
						
							| 81 | 1 | ad2antrr |  | 
						
							| 82 |  | simprr |  | 
						
							| 83 | 12 16 81 82 | isinito |  | 
						
							| 84 | 80 83 | mpbird |  | 
						
							| 85 | 84 | ex |  | 
						
							| 86 | 5 7 85 | mp2and |  | 
						
							| 87 | 3 86 | mpdan |  |