Step |
Hyp |
Ref |
Expression |
1 |
|
inlinecirc02p.i |
|
2 |
|
inlinecirc02p.e |
|
3 |
|
inlinecirc02p.p |
|
4 |
|
inlinecirc02p.s |
|
5 |
|
inlinecirc02p.0 |
|
6 |
|
inlinecirc02p.l |
|
7 |
|
inlinecirc02p.d |
|
8 |
3
|
ovexi |
|
9 |
8
|
a1i |
|
10 |
|
simpl |
|
11 |
|
simpl |
|
12 |
11
|
adantl |
|
13 |
1 3
|
rrx2pxel |
|
14 |
13
|
3ad2ant1 |
|
15 |
14
|
adantr |
|
16 |
1 3
|
rrx2pyel |
|
17 |
16
|
3ad2ant1 |
|
18 |
17
|
adantr |
|
19 |
1 3
|
rrx2pxel |
|
20 |
19
|
3ad2ant2 |
|
21 |
20
|
adantr |
|
22 |
1 3
|
rrx2pyel |
|
23 |
22
|
3ad2ant2 |
|
24 |
23
|
adantr |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
|
rpre |
|
29 |
28
|
adantr |
|
30 |
29
|
adantl |
|
31 |
|
2nn0 |
|
32 |
|
eqid |
|
33 |
32
|
ehlval |
|
34 |
31 33
|
ax-mp |
|
35 |
|
fz12pr |
|
36 |
35 1
|
eqtr4i |
|
37 |
36
|
fveq2i |
|
38 |
34 37
|
eqtri |
|
39 |
2 38
|
eqtr4i |
|
40 |
1
|
oveq2i |
|
41 |
3 40
|
eqtri |
|
42 |
1
|
xpeq1i |
|
43 |
5 42
|
eqtri |
|
44 |
39 41 7 43
|
ehl2eudis0lt |
|
45 |
44
|
3ad2antl1 |
|
46 |
45
|
biimpd |
|
47 |
46
|
impr |
|
48 |
1 3
|
rrx2pnecoorneor |
|
49 |
48
|
orcomd |
|
50 |
49
|
adantr |
|
51 |
|
eqid |
|
52 |
|
eqid |
|
53 |
15 18 21 24 25 26 27 30 47 50 51 52
|
2itscp |
|
54 |
19
|
recnd |
|
55 |
54
|
adantl |
|
56 |
13
|
recnd |
|
57 |
56
|
adantr |
|
58 |
16
|
recnd |
|
59 |
58
|
adantr |
|
60 |
55 57 59
|
subdird |
|
61 |
22
|
recnd |
|
62 |
61
|
adantl |
|
63 |
59 62 57
|
subdird |
|
64 |
60 63
|
oveq12d |
|
65 |
55 59
|
mulcomd |
|
66 |
65
|
oveq1d |
|
67 |
59 57
|
mulcomd |
|
68 |
62 57
|
mulcomd |
|
69 |
67 68
|
oveq12d |
|
70 |
66 69
|
oveq12d |
|
71 |
59 55
|
mulcld |
|
72 |
57 59
|
mulcld |
|
73 |
57 62
|
mulcld |
|
74 |
71 72 73
|
npncand |
|
75 |
64 70 74
|
3eqtrd |
|
76 |
75
|
3adant3 |
|
77 |
76
|
adantr |
|
78 |
77
|
eqcomd |
|
79 |
78
|
oveq1d |
|
80 |
79
|
oveq2d |
|
81 |
53 80
|
breqtrrd |
|
82 |
|
eqid |
|
83 |
|
eqid |
|
84 |
1 2 3 4 5 6 51 82 26 25 83
|
inlinecirc02plem |
|
85 |
10 12 81 84
|
syl12anc |
|
86 |
|
prprelprb |
|
87 |
9 85 86
|
sylanbrc |
|