Step |
Hyp |
Ref |
Expression |
1 |
|
inlinecirc02p.i |
|
2 |
|
inlinecirc02p.e |
|
3 |
|
inlinecirc02p.p |
|
4 |
|
inlinecirc02p.s |
|
5 |
|
inlinecirc02p.0 |
|
6 |
|
inlinecirc02p.l |
|
7 |
|
inlinecirc02plem.q |
|
8 |
|
inlinecirc02plem.d |
|
9 |
|
inlinecirc02plem.a |
|
10 |
|
inlinecirc02plem.b |
|
11 |
|
inlinecirc02plem.c |
|
12 |
|
simprr |
|
13 |
12
|
gt0ne0d |
|
14 |
1 3
|
rrx2pyel |
|
15 |
14
|
adantr |
|
16 |
1 3
|
rrx2pyel |
|
17 |
16
|
adantl |
|
18 |
15 17
|
resubcld |
|
19 |
9 18
|
eqeltrid |
|
20 |
19
|
3adant3 |
|
21 |
20
|
adantr |
|
22 |
1 3
|
rrx2pxel |
|
23 |
22
|
adantl |
|
24 |
1 3
|
rrx2pxel |
|
25 |
24
|
adantr |
|
26 |
23 25
|
resubcld |
|
27 |
10 26
|
eqeltrid |
|
28 |
27
|
3adant3 |
|
29 |
28
|
adantr |
|
30 |
15 23
|
remulcld |
|
31 |
25 17
|
remulcld |
|
32 |
30 31
|
resubcld |
|
33 |
11 32
|
eqeltrid |
|
34 |
33
|
3adant3 |
|
35 |
34
|
adantr |
|
36 |
19 27 33
|
3jca |
|
37 |
36
|
3adant3 |
|
38 |
|
rpre |
|
39 |
38
|
adantr |
|
40 |
7 8
|
itsclc0lem3 |
|
41 |
37 39 40
|
syl2an |
|
42 |
41 12
|
elrpd |
|
43 |
42
|
rprege0d |
|
44 |
7
|
resum2sqcl |
|
45 |
19 27 44
|
syl2anc |
|
46 |
45
|
3adant3 |
|
47 |
1 3 10 9
|
rrx2pnedifcoorneorr |
|
48 |
47
|
orcomd |
|
49 |
7
|
resum2sqorgt0 |
|
50 |
20 28 48 49
|
syl3anc |
|
51 |
50
|
gt0ne0d |
|
52 |
46 51
|
jca |
|
53 |
52
|
adantr |
|
54 |
|
itsclc0lem1 |
|
55 |
21 29 35 43 53 54
|
syl311anc |
|
56 |
|
itsclc0lem2 |
|
57 |
29 21 35 43 53 56
|
syl311anc |
|
58 |
55 57
|
jca |
|
59 |
58
|
adantr |
|
60 |
1 3
|
prelrrx2 |
|
61 |
59 60
|
syl |
|
62 |
|
itsclc0lem2 |
|
63 |
21 29 35 43 53 62
|
syl311anc |
|
64 |
|
itsclc0lem1 |
|
65 |
29 21 35 43 53 64
|
syl311anc |
|
66 |
63 65
|
jca |
|
67 |
66
|
adantr |
|
68 |
1 3
|
prelrrx2 |
|
69 |
67 68
|
syl |
|
70 |
|
simpl |
|
71 |
|
simprl |
|
72 |
|
0red |
|
73 |
72 41 12
|
ltled |
|
74 |
70 71 73
|
jca32 |
|
75 |
74
|
adantr |
|
76 |
1 2 3 4 5 7 8 6 9 10 11
|
itsclinecirc0in |
|
77 |
75 76
|
syl |
|
78 |
|
opex |
|
79 |
|
opex |
|
80 |
|
opex |
|
81 |
|
opex |
|
82 |
80 81
|
pm3.2i |
|
83 |
48
|
adantr |
|
84 |
83
|
adantr |
|
85 |
|
orcom |
|
86 |
21
|
recnd |
|
87 |
86
|
adantr |
|
88 |
35
|
recnd |
|
89 |
88
|
adantr |
|
90 |
87 89
|
mulcld |
|
91 |
29
|
recnd |
|
92 |
91
|
adantr |
|
93 |
41
|
recnd |
|
94 |
93
|
adantr |
|
95 |
94
|
sqrtcld |
|
96 |
92 95
|
mulcld |
|
97 |
90 96
|
addcld |
|
98 |
90 96
|
subcld |
|
99 |
46
|
adantr |
|
100 |
99
|
recnd |
|
101 |
51
|
adantr |
|
102 |
100 101
|
jca |
|
103 |
102
|
adantr |
|
104 |
|
div11 |
|
105 |
97 98 103 104
|
syl3anc |
|
106 |
|
addsubeq0 |
|
107 |
90 96 106
|
syl2anc |
|
108 |
41 73
|
resqrtcld |
|
109 |
108
|
recnd |
|
110 |
91 109
|
mul0ord |
|
111 |
110
|
adantr |
|
112 |
|
eqneqall |
|
113 |
112
|
com12 |
|
114 |
113
|
adantl |
|
115 |
|
sqrt00 |
|
116 |
41 73 115
|
syl2anc |
|
117 |
116
|
biimpd |
|
118 |
117
|
adantr |
|
119 |
114 118
|
jaod |
|
120 |
111 119
|
sylbid |
|
121 |
107 120
|
sylbid |
|
122 |
105 121
|
sylbid |
|
123 |
122
|
necon3d |
|
124 |
123
|
impancom |
|
125 |
124
|
imp |
|
126 |
125
|
olcd |
|
127 |
|
1ex |
|
128 |
|
ovex |
|
129 |
127 128
|
opthne |
|
130 |
126 129
|
sylibr |
|
131 |
|
1ne2 |
|
132 |
131
|
orci |
|
133 |
127 128
|
opthne |
|
134 |
132 133
|
mpbir |
|
135 |
130 134
|
jctir |
|
136 |
135
|
ex |
|
137 |
27 33
|
remulcld |
|
138 |
137
|
3adant3 |
|
139 |
138
|
adantr |
|
140 |
21 108
|
remulcld |
|
141 |
139 140
|
resubcld |
|
142 |
141
|
recnd |
|
143 |
142
|
adantr |
|
144 |
29 35
|
remulcld |
|
145 |
144 140
|
readdcld |
|
146 |
145
|
adantr |
|
147 |
146
|
recnd |
|
148 |
102
|
adantr |
|
149 |
|
div11 |
|
150 |
143 147 148 149
|
syl3anc |
|
151 |
139
|
recnd |
|
152 |
140
|
recnd |
|
153 |
151 152
|
jca |
|
154 |
153
|
adantr |
|
155 |
|
eqcom |
|
156 |
|
addsubeq0 |
|
157 |
155 156
|
syl5bb |
|
158 |
154 157
|
syl |
|
159 |
86 109
|
mul0ord |
|
160 |
159
|
adantr |
|
161 |
|
eqneqall |
|
162 |
161
|
com12 |
|
163 |
162
|
adantl |
|
164 |
117
|
adantr |
|
165 |
163 164
|
jaod |
|
166 |
160 165
|
sylbid |
|
167 |
158 166
|
sylbid |
|
168 |
150 167
|
sylbid |
|
169 |
168
|
necon3d |
|
170 |
169
|
impancom |
|
171 |
170
|
imp |
|
172 |
171
|
olcd |
|
173 |
|
2ex |
|
174 |
|
ovex |
|
175 |
173 174
|
opthne |
|
176 |
172 175
|
sylibr |
|
177 |
131
|
necomi |
|
178 |
177
|
orci |
|
179 |
173 174
|
opthne |
|
180 |
178 179
|
mpbir |
|
181 |
176 180
|
jctil |
|
182 |
181
|
ex |
|
183 |
136 182
|
orim12d |
|
184 |
85 183
|
syl5bi |
|
185 |
84 184
|
mpd |
|
186 |
|
prneimg |
|
187 |
186
|
imp |
|
188 |
78 79 82 185 187
|
mpsyl4anc |
|
189 |
77 188
|
jca |
|
190 |
61 69 189
|
3jca |
|
191 |
13 190
|
mpdan |
|
192 |
|
preq1 |
|
193 |
192
|
eqeq2d |
|
194 |
|
neeq1 |
|
195 |
193 194
|
anbi12d |
|
196 |
|
preq2 |
|
197 |
196
|
eqeq2d |
|
198 |
|
neeq2 |
|
199 |
197 198
|
anbi12d |
|
200 |
195 199
|
rspc2ev |
|
201 |
191 200
|
syl |
|