Metamath Proof Explorer


Theorem inlinecirc02preu

Description: Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points, expressed with restricted uniqueness (and without the definition of proper pairs). (Contributed by AV, 16-May-2023)

Ref Expression
Hypotheses inlinecirc02p.i I = 1 2
inlinecirc02p.e E = I
inlinecirc02p.p P = I
inlinecirc02p.s S = Sphere E
inlinecirc02p.0 0 ˙ = I × 0
inlinecirc02p.l L = Line M E
inlinecirc02p.d D = dist E
Assertion inlinecirc02preu X P Y P X Y R + X D 0 ˙ < R ∃! p 𝒫 P p = 2 p = 0 ˙ S R X L Y

Proof

Step Hyp Ref Expression
1 inlinecirc02p.i I = 1 2
2 inlinecirc02p.e E = I
3 inlinecirc02p.p P = I
4 inlinecirc02p.s S = Sphere E
5 inlinecirc02p.0 0 ˙ = I × 0
6 inlinecirc02p.l L = Line M E
7 inlinecirc02p.d D = dist E
8 1 2 3 4 5 6 7 inlinecirc02p X P Y P X Y R + X D 0 ˙ < R 0 ˙ S R X L Y PrPairs P
9 reueq 0 ˙ S R X L Y PrPairs P ∃! p PrPairs P p = 0 ˙ S R X L Y
10 8 9 sylib X P Y P X Y R + X D 0 ˙ < R ∃! p PrPairs P p = 0 ˙ S R X L Y
11 3 ovexi P V
12 prprreueq P V ∃! p PrPairs P p = 0 ˙ S R X L Y ∃! p 𝒫 P p = 2 p = 0 ˙ S R X L Y
13 11 12 mp1i X P Y P X Y R + X D 0 ˙ < R ∃! p PrPairs P p = 0 ˙ S R X L Y ∃! p 𝒫 P p = 2 p = 0 ˙ S R X L Y
14 10 13 mpbid X P Y P X Y R + X D 0 ˙ < R ∃! p 𝒫 P p = 2 p = 0 ˙ S R X L Y