Metamath Proof Explorer


Theorem inlresf

Description: The left injection restricted to the left class of a disjoint union is a function from the left class into the disjoint union. (Contributed by AV, 27-Jun-2022)

Ref Expression
Assertion inlresf inl A : A A ⊔︀ B

Proof

Step Hyp Ref Expression
1 djulf1o inl : V 1-1 onto × V
2 f1ofun inl : V 1-1 onto × V Fun inl
3 ffvresb Fun inl inl A : A A ⊔︀ B x A x dom inl inl x A ⊔︀ B
4 1 2 3 mp2b inl A : A A ⊔︀ B x A x dom inl inl x A ⊔︀ B
5 elex x A x V
6 opex x V
7 df-inl inl = x V x
8 6 7 dmmpti dom inl = V
9 5 8 eleqtrrdi x A x dom inl
10 djulcl x A inl x A ⊔︀ B
11 9 10 jca x A x dom inl inl x A ⊔︀ B
12 4 11 mprgbir inl A : A A ⊔︀ B