Metamath Proof Explorer


Theorem inmbl

Description: An intersection of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion inmbl A dom vol B dom vol A B dom vol

Proof

Step Hyp Ref Expression
1 difundi A B = A B
2 mblss A dom vol A
3 dfss4 A A = A
4 2 3 sylib A dom vol A = A
5 mblss B dom vol B
6 dfss4 B B = B
7 5 6 sylib B dom vol B = B
8 4 7 ineqan12d A dom vol B dom vol A B = A B
9 1 8 syl5eq A dom vol B dom vol A B = A B
10 cmmbl A dom vol A dom vol
11 cmmbl B dom vol B dom vol
12 unmbl A dom vol B dom vol A B dom vol
13 10 11 12 syl2an A dom vol B dom vol A B dom vol
14 cmmbl A B dom vol A B dom vol
15 13 14 syl A dom vol B dom vol A B dom vol
16 9 15 eqeltrrd A dom vol B dom vol A B dom vol