Metamath Proof Explorer


Theorem inn0f

Description: A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses inn0f.1 _ x A
inn0f.2 _ x B
Assertion inn0f A B x A x B

Proof

Step Hyp Ref Expression
1 inn0f.1 _ x A
2 inn0f.2 _ x B
3 elin x A B x A x B
4 3 exbii x x A B x x A x B
5 1 2 nfin _ x A B
6 5 n0f A B x x A B
7 df-rex x A x B x x A x B
8 4 6 7 3bitr4i A B x A x B