Metamath Proof Explorer


Theorem inopn

Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006)

Ref Expression
Assertion inopn J Top A J B J A B J

Proof

Step Hyp Ref Expression
1 istopg J Top J Top x x J x J x J y J x y J
2 1 ibi J Top x x J x J x J y J x y J
3 2 simprd J Top x J y J x y J
4 ineq1 x = A x y = A y
5 4 eleq1d x = A x y J A y J
6 ineq2 y = B A y = A B
7 6 eleq1d y = B A y J A B J
8 5 7 rspc2v A J B J x J y J x y J A B J
9 3 8 syl5com J Top A J B J A B J
10 9 3impib J Top A J B J A B J